import gradio as gr from huggingface_hub import InferenceClient import matplotlib.pyplot as plt from PIL import Image from rdkit.Chem import Descriptors, QED, Draw from rdkit.Chem.Crippen import MolLogP import pandas as pd from rdkit.Contrib.SA_Score import sascorer from rdkit.Chem import DataStructs, AllChem from transformers import BartForConditionalGeneration, AutoTokenizer, AutoModel from transformers.modeling_outputs import BaseModelOutput import selfies as sf from rdkit import Chem import torch import numpy as np import umap import pickle import xgboost as xgb from sklearn.svm import SVR from sklearn.linear_model import LinearRegression from sklearn.kernel_ridge import KernelRidge import json import os os.environ["OMP_MAX_ACTIVE_LEVELS"] = "1" # my_theme = gr.Theme.from_hub("ysharma/steampunk") # my_theme = gr.themes.Glass() """ # カスタムテーマ設定 theme = gr.themes.Default().set( body_background_fill="#000000", # 背景色を黒に設定 text_color="#FFFFFF", # テキスト色を白に設定 ) """ """ import sys sys.path.append("models") sys.path.append("../models") sys.path.append("../")""" # Get the current file's directory base_dir = os.path.dirname(__file__) print("Base Dir : ", base_dir) import models.fm4m as fm4m # Function to display molecule image from SMILES def smiles_to_image(smiles): mol = Chem.MolFromSmiles(smiles) if mol: img = Draw.MolToImage(mol) return img return None # Function to get canonical SMILES def get_canonical_smiles(smiles): mol = Chem.MolFromSmiles(smiles) if mol: return Chem.MolToSmiles(mol, canonical=True) return None # Dictionary for SMILES strings and corresponding images (you can replace with your actual image paths) smiles_image_mapping = { "Mol 1": {"smiles": "C=C(C)CC(=O)NC[C@H](CO)NC(=O)C=Cc1ccc(C)c(Cl)c1", "image": "img/img1.png"}, # Example SMILES for ethanol "Mol 2": {"smiles": "C=CC1(CC(=O)NC[C@@H](CCCC)NC(=O)c2cc(Cl)cc(Br)c2)CC1", "image": "img/img2.png"}, # Example SMILES for butane "Mol 3": {"smiles": "C=C(C)C[C@H](NC(C)=O)C(=O)N1CC[C@H](NC(=O)[C@H]2C[C@@]2(C)Br)C(C)(C)C1", "image": "img/img3.png"}, # Example SMILES for ethylamine "Mol 4": {"smiles": "C=C1CC(CC(=O)N[C@H]2CCN(C(=O)c3ncccc3SC)C23CC3)C1", "image": "img/img4.png"}, # Example SMILES for diethyl ether "Mol 5": {"smiles": "C=CCS[C@@H](C)CC(=O)OCC", "image": "img/img5.png"} # Example SMILES for chloroethane } datasets = [" ", "BACE", "ESOL", "Load Custom Dataset"] models_enabled = ["SELFIES-TED", "MHG-GED", "MolFormer", "SMI-TED"] fusion_available = ["Concat"] global log_df log_df = pd.DataFrame(columns=["Selected Models", "Dataset", "Task", "Result"]) def log_selection(models, dataset, task_type, result, log_df): # Append the new entry to the DataFrame new_entry = {"Selected Models": str(models), "Dataset": dataset, "Task": task_type, "Result": result} updated_log_df = log_df.append(new_entry, ignore_index=True) return updated_log_df # Function to handle evaluation and logging def save_rep(models, dataset, task_type, eval_output): return def evaluate_and_log(models, dataset, task_type, eval_output): task_dic = {'Classification': 'CLS', 'Regression': 'RGR'} result = f"{eval_output}"#display_eval(models, dataset, task_type, fusion_type=None) result = result.replace(" Score", "") new_entry = {"Selected Models": str(models), "Dataset": dataset, "Task": task_dic[task_type], "Result": result} new_entry_df = pd.DataFrame([new_entry]) log_df = pd.read_csv('log.csv', index_col=0) log_df = pd.concat([new_entry_df, log_df]) log_df.to_csv('log.csv') return log_df try: log_df = pd.read_csv('log.csv', index_col=0) except: log_df = pd.DataFrame({"":[], 'Selected Models': [], 'Dataset': [], 'Task': [], 'Result': [] }) csv_file_path = 'log.csv' log_df.to_csv(csv_file_path, index=False) # Load images for selection def load_image(path): try: return Image.open(smiles_image_mapping[path]["image"])# Image.1open(path) except: pass # Function to handle image selection def handle_image_selection(image_key): smiles = smiles_image_mapping[image_key]["smiles"] mol_image = smiles_to_image(smiles) return smiles, mol_image def calculate_properties(smiles): mol = Chem.MolFromSmiles(smiles) if mol: qed = QED.qed(mol) logp = MolLogP(mol) sa = sascorer.calculateScore(mol) wt = Descriptors.MolWt(mol) return qed, sa, logp, wt return None, None, None, None # Function to calculate Tanimoto similarity def calculate_tanimoto(smiles1, smiles2): mol1 = Chem.MolFromSmiles(smiles1) mol2 = Chem.MolFromSmiles(smiles2) if mol1 and mol2: # fp1 = FingerprintMols.FingerprintMol(mol1) # fp2 = FingerprintMols.FingerprintMol(mol2) fp1 = AllChem.GetMorganFingerprintAsBitVect(mol1, 2) fp2 = AllChem.GetMorganFingerprintAsBitVect(mol2, 2) return round(DataStructs.FingerprintSimilarity(fp1, fp2), 2) return None #with open("models/selfies_model/bart-2908.pickle", "rb") as input_file: # gen_model, gen_tokenizer = pickle.load(input_file) gen_tokenizer = AutoTokenizer.from_pretrained("ibm/materials.selfies-ted") gen_model = BartForConditionalGeneration.from_pretrained("ibm/materials.selfies-ted") def generate(latent_vector, mask): encoder_outputs = BaseModelOutput(latent_vector) decoder_output = gen_model.generate(encoder_outputs=encoder_outputs, attention_mask=mask, max_new_tokens=64, do_sample=True, top_k=5, top_p=0.95, num_return_sequences=1) selfies = gen_tokenizer.batch_decode(decoder_output, skip_special_tokens=True) outs = [] for i in selfies: outs.append(sf.decoder(i.replace("] [", "]["))) return outs def perturb_latent(latent_vecs, noise_scale=0.5): modified_vec = torch.tensor(np.random.uniform(0, 1, latent_vecs.shape) * noise_scale, dtype=torch.float32) + latent_vecs return modified_vec def encode(selfies): encoding = gen_tokenizer(selfies, return_tensors='pt', max_length=128, truncation=True, padding='max_length') input_ids = encoding['input_ids'] attention_mask = encoding['attention_mask'] outputs = gen_model.model.encoder(input_ids=input_ids, attention_mask=attention_mask) model_output = outputs.last_hidden_state """input_mask_expanded = attention_mask.unsqueeze(-1).expand(model_output.size()).float() sum_embeddings = torch.sum(model_output * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) model_output = sum_embeddings / sum_mask""" return model_output, attention_mask # Function to generate canonical SMILES and molecule image def generate_canonical(smiles): s = sf.encoder(smiles) selfie = s.replace("][", "] [") latent_vec, mask = encode([selfie]) gen_mol = None for i in range(5, 51): noise = i / 10 perturbed_latent = perturb_latent(latent_vec, noise_scale=noise) gen = generate(perturbed_latent, mask) gen_mol = Chem.MolToSmiles(Chem.MolFromSmiles(gen[0])) if gen_mol != Chem.MolToSmiles(Chem.MolFromSmiles(smiles)): break if gen_mol: # Calculate properties for ref and gen molecules ref_properties = calculate_properties(smiles) gen_properties = calculate_properties(gen_mol) tanimoto_similarity = calculate_tanimoto(smiles, gen_mol) # Prepare the table with ref mol and gen mol data = { "Property": ["QED", "SA", "LogP", "Mol Wt", "Tanimoto Similarity"], "Reference Mol": [ref_properties[0], ref_properties[1], ref_properties[2], ref_properties[3], tanimoto_similarity], "Generated Mol": [gen_properties[0], gen_properties[1], gen_properties[2], gen_properties[3], ""] } df = pd.DataFrame(data) # Display molecule image of canonical smiles mol_image = smiles_to_image(gen_mol) return df, gen_mol, mol_image return "Invalid SMILES", None, None # Function to display evaluation score def display_eval(selected_models, dataset, task_type, downstream, fusion_type): result = None try: downstream_model = downstream.split("*")[0].lstrip() downstream_model = downstream_model.rstrip() hyp_param = downstream.split("*")[-1].lstrip() hyp_param = hyp_param.rstrip() hyp_param = hyp_param.replace("nan", "float('nan')") params = eval(hyp_param) except: downstream_model = downstream.split("*")[0].lstrip() downstream_model = downstream_model.rstrip() params = None try: if not selected_models: return "Please select at least one enabled model." if task_type == "Classification": global roc_auc, fpr, tpr, x_batch, y_batch elif task_type == "Regression": global RMSE, y_batch_test, y_prob if len(selected_models) > 1: if task_type == "Classification": #result, roc_auc, fpr, tpr, x_batch, y_batch = fm4m.multi_modal(model_list=selected_models, # downstream_model="XGBClassifier", # dataset=dataset.lower()) if downstream_model == "Default Settings": downstream_model = "DefaultClassifier" params = None result, roc_auc, fpr, tpr, x_batch, y_batch = fm4m.multi_modal(model_list=selected_models, downstream_model=downstream_model, params = params, dataset=dataset) elif task_type == "Regression": #result, RMSE, y_batch_test, y_prob = fm4m.multi_modal(model_list=selected_models, # downstream_model="XGBRegressor", # dataset=dataset.lower()) if downstream_model == "Default Settings": downstream_model = "DefaultRegressor" params = None result, RMSE, y_batch_test, y_prob, x_batch, y_batch = fm4m.multi_modal(model_list=selected_models, downstream_model=downstream_model, params=params, dataset=dataset) else: if task_type == "Classification": #result, roc_auc, fpr, tpr, x_batch, y_batch = fm4m.single_modal(model=selected_models[0], # downstream_model="XGBClassifier", # dataset=dataset.lower()) if downstream_model == "Default Settings": downstream_model = "DefaultClassifier" params = None result, roc_auc, fpr, tpr, x_batch, y_batch = fm4m.single_modal(model=selected_models[0], downstream_model=downstream_model, params=params, dataset=dataset) elif task_type == "Regression": #result, RMSE, y_batch_test, y_prob = fm4m.single_modal(model=selected_models[0], # downstream_model="XGBRegressor", # dataset=dataset.lower()) if downstream_model == "Default Settings": downstream_model = "DefaultRegressor" params = None result, RMSE, y_batch_test, y_prob, x_batch, y_batch = fm4m.single_modal(model=selected_models[0], downstream_model=downstream_model, params=params, dataset=dataset) if result == None: result = "Data & Model Setting is incorrect" except Exception as e: return f"An error occurred: {e}" return f"{result}" # Function to handle plot display def display_plot(plot_type): fig, ax = plt.subplots() if plot_type == "Latent Space": global x_batch, y_batch ax.set_title("T-SNE Plot") # reducer = umap.UMAP(metric='euclidean', n_neighbors= 10, n_components=2, low_memory=True, min_dist=0.1, verbose=False) # features_umap = reducer.fit_transform(x_batch[:500]) # x = y_batch.values[:500] # index_0 = [index for index in range(len(x)) if x[index] == 0] # index_1 = [index for index in range(len(x)) if x[index] == 1] class_0 = x_batch # features_umap[index_0] class_1 = y_batch # features_umap[index_1] """with open("latent_multi_bace.pkl", "rb") as f: class_0, class_1 = pickle.load(f) """ plt.scatter(class_1[:, 0], class_1[:, 1], c='red', label='Class 1') plt.scatter(class_0[:, 0], class_0[:, 1], c='blue', label='Class 0') ax.set_xlabel('Feature 1') ax.set_ylabel('Feature 2') ax.set_title('Dataset Distribution') elif plot_type == "ROC-AUC": global roc_auc, fpr, tpr ax.set_title("ROC-AUC Curve") try: ax.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC curve (area = {roc_auc:.4f})') ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') ax.set_xlim([0.0, 1.0]) ax.set_ylim([0.0, 1.05]) except: pass ax.set_xlabel('False Positive Rate') ax.set_ylabel('True Positive Rate') ax.set_title('Receiver Operating Characteristic') ax.legend(loc='lower right') elif plot_type == "Parity Plot": global RMSE, y_batch_test, y_prob ax.set_title("Parity plot") # change format try: print(y_batch_test) print(y_prob) y_batch_test = np.array(y_batch_test, dtype=float) y_prob = np.array(y_prob, dtype=float) ax.scatter(y_batch_test, y_prob, color="blue", label=f"Predicted vs Actual (RMSE: {RMSE:.4f})") min_val = min(min(y_batch_test), min(y_prob)) max_val = max(max(y_batch_test), max(y_prob)) ax.plot([min_val, max_val], [min_val, max_val], 'r-') except: y_batch_test = [] y_prob = [] RMSE = None print(y_batch_test) print(y_prob) ax.set_xlabel('Actual Values') ax.set_ylabel('Predicted Values') ax.legend(loc='lower right') return fig # Predefined dataset paths (these should be adjusted to your file paths) predefined_datasets = { " ": " ", "BACE": f"./data/bace/train.csv, ./data/bace/test.csv, smiles, Class", "ESOL": f"./data/esol/train.csv, ./data/esol/test.csv, smiles, prop", } # Function to load a predefined dataset from the local path def load_predefined_dataset(dataset_name): val = predefined_datasets.get(dataset_name) try: file_path = val.split(",")[0] except:file_path=False if file_path: df = pd.read_csv(file_path) return df.head(), gr.update(choices=list(df.columns)), gr.update(choices=list(df.columns)), f"{dataset_name.lower()}" return pd.DataFrame(), gr.update(choices=[]), gr.update(choices=[]), f"Dataset not found" # Function to display the head of the uploaded CSV file def display_csv_head(file): if file is not None: # Load the CSV file into a DataFrame df = pd.read_csv(file.name) return df.head(), gr.update(choices=list(df.columns)), gr.update(choices=list(df.columns)) return pd.DataFrame(), gr.update(choices=[]), gr.update(choices=[]) # Function to handle dataset selection (predefined or custom) def handle_dataset_selection(selected_dataset): if selected_dataset == "Custom Dataset": # Show file upload fields for train and test datasets if "Custom Dataset" is selected return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update( visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True) else: return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update( visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) # Function to select input and output columns and display a message def select_columns(input_column, output_column, train_data, test_data,dataset_name): if input_column and output_column: return f"{train_data.name},{test_data.name},{input_column},{output_column},{dataset_name}" return "Please select both input and output columns." def set_dataname(dataset_name, dataset_selector ): if dataset_selector == "Custom Dataset": return f"{dataset_name}" return f"{dataset_selector}" # Function to create model based on user input def create_model(model_name, max_depth=None, n_estimators=None, alpha=None, degree=None, kernel=None): if model_name == "XGBClassifier": model = xgb.XGBClassifier(objective='binary:logistic',eval_metric= 'auc', max_depth=max_depth, n_estimators=n_estimators, alpha=alpha) elif model_name == "SVR": model = SVR(degree=degree, kernel=kernel) elif model_name == "Kernel Ridge": model = KernelRidge(alpha=alpha, degree=degree, kernel=kernel) elif model_name == "Linear Regression": model = LinearRegression() elif model_name == "Default - Auto": model = "Default Settings" return f"{model}" else: return "Model not supported." return f"{model_name} * {model.get_params()}" def model_selector(model_name): # Dynamically return the appropriate hyperparameter components based on the selected model if model_name == "XGBClassifier": return ( gr.Slider(1, 10, label="max_depth"), gr.Slider(50, 500, label="n_estimators"), gr.Slider(0.1, 10.0, step=0.1, label="alpha") ) elif model_name == "SVR": return ( gr.Slider(1, 5, label="degree"), gr.Dropdown(["rbf", "poly", "linear"], label="kernel") ) elif model_name == "Kernel Ridge": return ( gr.Slider(0.1, 10.0, step=0.1, label="alpha"), gr.Slider(1, 5, label="degree"), gr.Dropdown(["rbf", "poly", "linear"], label="kernel") ) elif model_name == "Linear Regression": return () # No hyperparameters for Linear Regression else: return () # Define the Gradio layout # with gr.Blocks(theme=my_theme) as demo: with gr.Blocks() as demo: with gr.Row(): # Left Column with gr.Column(): gr.HTML('''