import gradio as gr import torch from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp from mammal.model import Mammal from mammal.keys import * model_path = "ibm/biomed.omics.bl.sm.ma-ted-458m" # Load Model model = Mammal.from_pretrained(model_path) model.eval() # Load Tokenizer tokenizer_op = ModularTokenizerOp.from_pretrained(model_path) # token for positive binding positive_token_id = tokenizer_op.get_token_id("<1>") # Default input proteins protein_calmodulin = "MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMISELDQDGFIDKEDLHDGDGKISFEEFLNLVNKEMTADVDGDGQVNYEEFVTMMTSK" protein_calcineurin = "MSSKLLLAGLDIERVLAEKNFYKEWDTWIIEAMNVGDEEVDRIKEFKEDEIFEEAKTLGTAEMQEYKKQKLEEAIEGAFDIFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIRQMWDQNGDWDRIKELKFGEIKKLSAKDTRGTIFIKVFENLGTGVDSEYEDVSKYMLKHQ" def format_prompt(prot1, prot2): # Formatting prompt to match pre-training syntax return f"<@TOKENIZER-TYPE=AA>{prot1}{prot2}" def run_prompt(prompt): # Create and load sample sample_dict = dict() sample_dict[ENCODER_INPUTS_STR] = prompt # Tokenize sample_dict = tokenizer_op( sample_dict=sample_dict, key_in=ENCODER_INPUTS_STR, key_out_tokens_ids=ENCODER_INPUTS_TOKENS, key_out_attention_mask=ENCODER_INPUTS_ATTENTION_MASK, ) sample_dict[ENCODER_INPUTS_TOKENS] = torch.tensor( sample_dict[ENCODER_INPUTS_TOKENS] ) sample_dict[ENCODER_INPUTS_ATTENTION_MASK] = torch.tensor( sample_dict[ENCODER_INPUTS_ATTENTION_MASK] ) # Generate Prediction batch_dict = model.generate( [sample_dict], output_scores=True, return_dict_in_generate=True, max_new_tokens=5, ) # Get output generated_output = tokenizer_op._tokenizer.decode(batch_dict[CLS_PRED][0]) score = batch_dict["model.out.scores"][0][1][positive_token_id].item() return generated_output, score def create_and_run_prompt(prot1, prot2): prompt = format_prompt(prot1, prot2) res = prompt, *run_prompt(prompt=prompt) return res def create_application(): markup_text = f""" # Mammal based Protein-Protein Interaction (PPI) demonstration Given two protein sequences, estimate if the proteins interact or not. ### Using the model from ```{model_path} ``` """ with gr.Blocks() as demo: gr.Markdown(markup_text) with gr.Row(): prot1 = gr.Textbox( label="Protein 1 sequence", # info="standard", interactive=True, lines=1, value=protein_calmodulin, ) prot2 = gr.Textbox( label="Protein 2 sequence", # info="standard", interactive=True, lines=1, value=protein_calcineurin, ) with gr.Row(): run_mammal = gr.Button( "Run Mammal prompt for Protein-Protein Interaction", variant="primary" ) with gr.Row(): prompt_box = gr.Textbox(label="Mammal prompt", lines=5) with gr.Row(): decoded = gr.Textbox(label="Mammal output") run_mammal.click( fn=create_and_run_prompt, inputs=[prot1, prot2], outputs=[prompt_box, decoded, gr.Number(label="PPI score")], ) with gr.Row(): gr.Markdown( "`````` contains the binding affinity class, which is ```<1>``` for interacting and ```<0>``` for non-interacting" ) return demo def main(): demo = create_application() demo.launch(show_error=True, share=True) if __name__ == "__main__": main()