File size: 6,950 Bytes
0de1d17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import pandas as pd
import numpy as np
from rouge_score import rouge_scorer
from joblib import Parallel, delayed
#from transformers import AutoTokenizer, DebertaForSequenceClassification
#import torch
from tqdm import tqdm
import logging
from .plots import bcolors
import random

logger = logging.getLogger(__name__)

# Local only for now
#DEVICE = "mps" if torch.backends.mps.is_available() else "cpu"
DEVICE = 'cpu'

def call_counter(func):
    def helper(*args, **kwargs):
        helper.calls += 1
        return func(*args, **kwargs)
    helper.calls = 0
    return helper

# @call_counter
# def entailment(tokenizer: AutoTokenizer, model: DebertaForSequenceClassification, a: str, b:str, c:str, df: pd.DataFrame) -> float:
#     """
#     uses model c to evaluate a vs. b

#     Entailment based on natural language inference - binary outcomes version.
#     """

#     def __helper(x, h):

#         premise = x[c]
#         hypothesis = x[h]

#         formatted_text = f"{premise}{tokenizer.sep_token}{hypothesis}"
#         inputs = tokenizer(formatted_text, return_tensors="pt", padding=True, truncation=True).to(DEVICE)

#         # Fetch class probabilities
#         with torch.no_grad():
#             predid = model(**inputs).logits.argmax(-1)
#             out = model.config.id2label[predid.item()]

#         if out == 'ENTAILMENT':
#             return 1
#         else:
#             return 0

#     a_ent = df.apply(__helper, args=(a,), axis=1)
#     b_ent = df.apply(__helper, args=(b,), axis=1)

#     if sum(a_ent) == sum(b_ent):
#         logger.info(f"Judge: {c}, {bcolors.PURPLE}{bcolors.BOLD}Model {a}: {sum(a_ent)}, Model {b}: {sum(b_ent)} {bcolors.ENDC} (of {len(df)}).")
#         return 0.5 # tied - in aggregate
#     elif sum(a_ent) > sum(b_ent):
#         logger.info(f"Judge: {c}, {bcolors.RED}{bcolors.BOLD}Model {a}: {sum(a_ent)}{bcolors.ENDC}, Model {b}: {sum(b_ent)} (of {len(df)}).")
#         return 1 # a wins - in aggregate
#     else:
#         logger.info(f"Judge: {c}, Model {a}: {sum(a_ent)}, {bcolors.RED}{bcolors.BOLD}Model {b}: {sum(b_ent)}{bcolors.ENDC} (of {len(df)}).")
#         return 0 # b wins

# @call_counter
# def entailment_p(tokenizer: AutoTokenizer, model: DebertaForSequenceClassification, a: str, b:str, c:str, df: pd.DataFrame) -> int:
#     """
#     uses model c to evaluate a vs. b

#     Entailment based on natural language inference - PROBABILITY version.
#     """


#     def chunks(lst, batch_size):
#         for i in range(0, len(lst), batch_size):
#             yield lst[i:i + batch_size]

#     def inference(ft):
#         inputs = tokenizer(ft, return_tensors="pt", padding=True, truncation=True).to(DEVICE)

#         idx = model.config.label2id['ENTAILMENT']
#         # Fetch entailment probabilities
#         with torch.no_grad():
#             logits = model(**inputs).logits
#             p = torch.nn.functional.softmax(logits, dim=1).to("cpu").numpy()[:, idx]

#         return p.tolist()

#     # prepare inputs
#     premise = df[c]
#     formatted_text = (premise + tokenizer.sep_token + df[a]).to_list() + \
#                      (premise + tokenizer.sep_token + df[b]).to_list()


#     p = []
#     for i in chunks(formatted_text, 4):
#         p += inference(i)

#     # Compare entailment probs between model 'a' and 'b'
#     ent_a = p[:len(p)//2]
#     ent_b = p[len(p)//2:]

#     values = [1 if i >= j else 0 for i, j in zip(ent_a, ent_b)] # 1-> "a" wins

#     # Win percentage
#     if sum(values) >= (0.5 * len(values)):
#         return 1 # a wins
#     else:
#         return 0 # b wins

@call_counter
def equality(a: str, b:str, c:str, df:pd.DataFrame) -> int:
    """
    use model c to evaluate a vs. b

    simple heuristic as the answers are multiple choice, so use equality.
    """

    ties = df[a] == df[b]
    a_wins = sum((df[a] == df[c]) & ~(ties))
    b_wins = sum((df[b] == df[c]) & ~(ties))

    if a_wins >= b_wins:
        return 1
    else:
        return 0

@call_counter
def noisy_equality(a: str, b:str, c:str, df:pd.DataFrame, p: float) -> int:
    """
    use model c to evaluate a vs. b

    noisy version of equality - where evaluations are flipped independently with
    probability p (p=1 will always flip, p=0, will never)
    """

    perturb = lambda x: not x if (random.random() <= p) else x

    ties = (df[a] == df[b])
    a_w =  (df[a] == df[c]).apply(perturb)
    b_w =  (df[b] == df[c]).apply(perturb)

    a_wins = sum(a_w & ~(ties))
    b_wins = sum(b_w & ~(ties))

    if a_wins >= b_wins:
        return 1
    else:
        return 0


@call_counter
def rouge(a: str, b: str, c:str, df: pd.DataFrame) -> float:
    """
    Summarization metric ROUGE2 - discrete version
    """
    scorer = rouge_scorer.RougeScorer(["rouge2"], use_stemmer=True)

    def __helper(x) -> int:

        score_a = scorer.score(x[c], x[a])['rouge2'].fmeasure
        score_b = scorer.score(x[c], x[b])['rouge2'].fmeasure
        #logger.info(f"{score_a}, {score_b}")

        if score_a >= score_b:
            return 1 # a wins this instance
        else:
            return 0 # b wins

    outcomes = df.apply(__helper, axis=1)
    a_wins = sum(outcomes)
    b_wins = sum(outcomes==0)

    if a_wins == b_wins:
        logger.info(f"Judge: {c}, {bcolors.PURPLE}{bcolors.BOLD}Model {a}: {a_wins}, Model {b}: {b_wins} {bcolors.ENDC} (of {len(df)}).")
        return 0.5 # tied overall
    elif a_wins > b_wins:
        logger.info(f"Judge: {c}, {bcolors.RED}{bcolors.BOLD}Model {a}: {a_wins}{bcolors.ENDC}, Model {b}: {b_wins} (of {len(df)}).")
        return 1 # a wins overall
    else:
        logger.info(f"Judge: {c}, Model {a}: {a_wins}, {bcolors.RED}{bcolors.BOLD}Model {b}: {b_wins}{bcolors.ENDC} (of {len(df)}).")
        return 0 # b wins


@call_counter
def rouge_avg(a: str, b: str, c:str, df: pd.DataFrame) -> float:
    """
    Summarization metric ROUGE2 - based on averages

    Following HELM returns the fmeasure
    https://github.com/stanford-crfm/helm/blob/9be35a339347a9f2ad5644d7b72aede57486e3d4/src/helm/benchmark/metrics/basic_metrics.py#L256
    """
    def __true_rouge(x, m, scorer):
        try:
            scores = scorer.score(x[c], x[m])
            value = scores["rouge2"].fmeasure
            return value
        except AttributeError:
            #print(x[c], x[m])
            return 0.0

    if a == b:
        return 0.5 # its a tie!
    if a == c:
        return 1. # a wins (as judge is the same)
    if b == c:
        return 0. # b wins as its also the judge

    scorer = rouge_scorer.RougeScorer(["rouge2"], use_stemmer=True)
    values = {}
    for m in [a, b]:
        values[m] = Parallel(n_jobs=-1, batch_size=128)(
            delayed(__true_rouge)(i, m, scorer) for _, i in df.iterrows()
        )

    # Compare average rouge score over entire benchmark
    if np.mean(values[a]) >= np.mean(values[b]):
        return 1. # a wins
    else:
        return 0. # b wins