Spaces:
Running
Running
File size: 6,950 Bytes
0de1d17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import pandas as pd
import numpy as np
from rouge_score import rouge_scorer
from joblib import Parallel, delayed
#from transformers import AutoTokenizer, DebertaForSequenceClassification
#import torch
from tqdm import tqdm
import logging
from .plots import bcolors
import random
logger = logging.getLogger(__name__)
# Local only for now
#DEVICE = "mps" if torch.backends.mps.is_available() else "cpu"
DEVICE = 'cpu'
def call_counter(func):
def helper(*args, **kwargs):
helper.calls += 1
return func(*args, **kwargs)
helper.calls = 0
return helper
# @call_counter
# def entailment(tokenizer: AutoTokenizer, model: DebertaForSequenceClassification, a: str, b:str, c:str, df: pd.DataFrame) -> float:
# """
# uses model c to evaluate a vs. b
# Entailment based on natural language inference - binary outcomes version.
# """
# def __helper(x, h):
# premise = x[c]
# hypothesis = x[h]
# formatted_text = f"{premise}{tokenizer.sep_token}{hypothesis}"
# inputs = tokenizer(formatted_text, return_tensors="pt", padding=True, truncation=True).to(DEVICE)
# # Fetch class probabilities
# with torch.no_grad():
# predid = model(**inputs).logits.argmax(-1)
# out = model.config.id2label[predid.item()]
# if out == 'ENTAILMENT':
# return 1
# else:
# return 0
# a_ent = df.apply(__helper, args=(a,), axis=1)
# b_ent = df.apply(__helper, args=(b,), axis=1)
# if sum(a_ent) == sum(b_ent):
# logger.info(f"Judge: {c}, {bcolors.PURPLE}{bcolors.BOLD}Model {a}: {sum(a_ent)}, Model {b}: {sum(b_ent)} {bcolors.ENDC} (of {len(df)}).")
# return 0.5 # tied - in aggregate
# elif sum(a_ent) > sum(b_ent):
# logger.info(f"Judge: {c}, {bcolors.RED}{bcolors.BOLD}Model {a}: {sum(a_ent)}{bcolors.ENDC}, Model {b}: {sum(b_ent)} (of {len(df)}).")
# return 1 # a wins - in aggregate
# else:
# logger.info(f"Judge: {c}, Model {a}: {sum(a_ent)}, {bcolors.RED}{bcolors.BOLD}Model {b}: {sum(b_ent)}{bcolors.ENDC} (of {len(df)}).")
# return 0 # b wins
# @call_counter
# def entailment_p(tokenizer: AutoTokenizer, model: DebertaForSequenceClassification, a: str, b:str, c:str, df: pd.DataFrame) -> int:
# """
# uses model c to evaluate a vs. b
# Entailment based on natural language inference - PROBABILITY version.
# """
# def chunks(lst, batch_size):
# for i in range(0, len(lst), batch_size):
# yield lst[i:i + batch_size]
# def inference(ft):
# inputs = tokenizer(ft, return_tensors="pt", padding=True, truncation=True).to(DEVICE)
# idx = model.config.label2id['ENTAILMENT']
# # Fetch entailment probabilities
# with torch.no_grad():
# logits = model(**inputs).logits
# p = torch.nn.functional.softmax(logits, dim=1).to("cpu").numpy()[:, idx]
# return p.tolist()
# # prepare inputs
# premise = df[c]
# formatted_text = (premise + tokenizer.sep_token + df[a]).to_list() + \
# (premise + tokenizer.sep_token + df[b]).to_list()
# p = []
# for i in chunks(formatted_text, 4):
# p += inference(i)
# # Compare entailment probs between model 'a' and 'b'
# ent_a = p[:len(p)//2]
# ent_b = p[len(p)//2:]
# values = [1 if i >= j else 0 for i, j in zip(ent_a, ent_b)] # 1-> "a" wins
# # Win percentage
# if sum(values) >= (0.5 * len(values)):
# return 1 # a wins
# else:
# return 0 # b wins
@call_counter
def equality(a: str, b:str, c:str, df:pd.DataFrame) -> int:
"""
use model c to evaluate a vs. b
simple heuristic as the answers are multiple choice, so use equality.
"""
ties = df[a] == df[b]
a_wins = sum((df[a] == df[c]) & ~(ties))
b_wins = sum((df[b] == df[c]) & ~(ties))
if a_wins >= b_wins:
return 1
else:
return 0
@call_counter
def noisy_equality(a: str, b:str, c:str, df:pd.DataFrame, p: float) -> int:
"""
use model c to evaluate a vs. b
noisy version of equality - where evaluations are flipped independently with
probability p (p=1 will always flip, p=0, will never)
"""
perturb = lambda x: not x if (random.random() <= p) else x
ties = (df[a] == df[b])
a_w = (df[a] == df[c]).apply(perturb)
b_w = (df[b] == df[c]).apply(perturb)
a_wins = sum(a_w & ~(ties))
b_wins = sum(b_w & ~(ties))
if a_wins >= b_wins:
return 1
else:
return 0
@call_counter
def rouge(a: str, b: str, c:str, df: pd.DataFrame) -> float:
"""
Summarization metric ROUGE2 - discrete version
"""
scorer = rouge_scorer.RougeScorer(["rouge2"], use_stemmer=True)
def __helper(x) -> int:
score_a = scorer.score(x[c], x[a])['rouge2'].fmeasure
score_b = scorer.score(x[c], x[b])['rouge2'].fmeasure
#logger.info(f"{score_a}, {score_b}")
if score_a >= score_b:
return 1 # a wins this instance
else:
return 0 # b wins
outcomes = df.apply(__helper, axis=1)
a_wins = sum(outcomes)
b_wins = sum(outcomes==0)
if a_wins == b_wins:
logger.info(f"Judge: {c}, {bcolors.PURPLE}{bcolors.BOLD}Model {a}: {a_wins}, Model {b}: {b_wins} {bcolors.ENDC} (of {len(df)}).")
return 0.5 # tied overall
elif a_wins > b_wins:
logger.info(f"Judge: {c}, {bcolors.RED}{bcolors.BOLD}Model {a}: {a_wins}{bcolors.ENDC}, Model {b}: {b_wins} (of {len(df)}).")
return 1 # a wins overall
else:
logger.info(f"Judge: {c}, Model {a}: {a_wins}, {bcolors.RED}{bcolors.BOLD}Model {b}: {b_wins}{bcolors.ENDC} (of {len(df)}).")
return 0 # b wins
@call_counter
def rouge_avg(a: str, b: str, c:str, df: pd.DataFrame) -> float:
"""
Summarization metric ROUGE2 - based on averages
Following HELM returns the fmeasure
https://github.com/stanford-crfm/helm/blob/9be35a339347a9f2ad5644d7b72aede57486e3d4/src/helm/benchmark/metrics/basic_metrics.py#L256
"""
def __true_rouge(x, m, scorer):
try:
scores = scorer.score(x[c], x[m])
value = scores["rouge2"].fmeasure
return value
except AttributeError:
#print(x[c], x[m])
return 0.0
if a == b:
return 0.5 # its a tie!
if a == c:
return 1. # a wins (as judge is the same)
if b == c:
return 0. # b wins as its also the judge
scorer = rouge_scorer.RougeScorer(["rouge2"], use_stemmer=True)
values = {}
for m in [a, b]:
values[m] = Parallel(n_jobs=-1, batch_size=128)(
delayed(__true_rouge)(i, m, scorer) for _, i in df.iterrows()
)
# Compare average rouge score over entire benchmark
if np.mean(values[a]) >= np.mean(values[b]):
return 1. # a wins
else:
return 0. # b wins
|