File size: 10,064 Bytes
ab6548f
0de1d17
 
 
 
 
 
 
 
 
ab6548f
 
0de1d17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import gradio as gr
import pandas as pd
import numpy as np
from rouge_score import rouge_scorer
from joblib import Parallel, delayed
from selfrank.algos.greedy import SelfRankGreedy
from selfrank.algos.iterative import SelfRank
from selfrank.algos.baseline import MCARank
from selfrank.algos.triplet import equality, rouge
import matplotlib.pyplot as plt


class UI:

    def __init__(self):
        """Load any static assets"""
        pass

    def header_block(self):
        """Title/description"""

        gr.Markdown(
            """<h1 style='text-align: center; color: black;'>🥇 Ranking LLMs without ground truth </h1>"""
        )
        gr.Markdown(
            "This space demonstrates reference-free ranking of large language models describe in our ACL Findings paper [Ranking Large Language Models without Ground Truth](https://arxiv.org/abs/2402.14860). <br>"
            "Inspired by real life where both an expert and a knowledgeable person can identify a novice the main idea is to consider triplets of models, where each one of them evaluates the other two, correctly identifying the worst model in the triplet with high probability. Iteratively performing such evaluations yields a estimated ranking that doesn't require ground truth/reference data which can be expensive to gather. The methods are a viable low-resource ranking mechanism for practical use.<br>"
            "[Source code](https://huggingface.co/spaces/ibm/llm-rank-themselves/tree/main).<br>"
        )
        gr.Markdown('---') 
        gr.Markdown('<br>')
        

    def selection_panel(self):
        """user selections"""
        gr.Markdown("""<h2 style='color: purple;'> Benchmark experiments </h2> """)
        with gr.Column(variant='compact'):
            self.data = gr.Dropdown(
                choices=["CNN/DM", "XSUM", "MMLU"],
                multiselect=False, value='CNN/DM',
                label="Choose a dataset.",
                info="The dataset describes a task",
                interactive=True,
            )
            self.evaluation = gr.Dropdown(
                choices=["Rouge", "Equality"],
                multiselect=False, value='Rouge',
                interactive=True,
                label="Evaluation function",
                info="How should the Judge model decide the winner? Demo limited to use 'Rouge' for generative tasks like summarization, and 'equality' for multiple choice or classification tasks. In practice you can use any function that compares judge responses to the contestant models.",
            )
            self.nmodels = gr.Dropdown(
                choices=[None, 10, 20, 30],
                label="Number of models",
                info="Sample a subset of LLMs to rank.",
                value=10,
                interactive=True,
            )
            self.nrows = gr.Dropdown(
                choices=[None, 10, 20, 30],
                label="Number of instances",
                info="Sample a subset of instances to evaluate (smaller is faster).",
                value=10,
                interactive=True,
            )
            self.method = gr.Dropdown(
                choices=["Greedy", "Full"],
                label="Algorithm variant to use",
                info="Choose from one of two variants. 'Full' (FTR in the paper) runs all triplet combinations, recommended when evaluations are cheap or for smaller datasets, or 'greedy' (GTR) a faster variant suggested for more complex evaluations.",
                value='Full',
                interactive=True,
            )
            self.btn_execute = gr.Button("Run")


    def output_panel(self):
        """Plots/leaderboard/bump charts"""
        with gr.Column(variant='default'):
            gr.Markdown("""<h2 style='color: purple;'> Estimated ranking </h2> """)
            self.leaderboard = gr.DataFrame()

        with gr.Column(variant='default'):
            gr.Markdown("""<h2 style='color: purple;'> Comparison to 'true' ranking </h2> """)
            #self.bumpchart = gr.Plot(format='png')
            self.bumpchart = gr.Image()
            self.eval_metrics = gr.Markdown()
           
    def synth_panel(self):
        """ Synthetic data experiments """
        gr.Markdown('<br>')
        gr.Markdown('---')
        gr.Markdown("""<h2 style='color: purple;'>Synthetic multiple choice </h2> """)

    def byod_panel(self):
        """ Synthetic data experiments """
        gr.Markdown('<br>')
        gr.Markdown('---')
        gr.Markdown("""<h2 style='color: purple;'>BYOD </h2> """)
        
            
    def layout(self):
        """ Assemble the overall layout """

        with gr.Blocks(theme=gr.themes.Default()) as demo:
            self.header_block()

            with gr.Row():

                # Selection panel
                with gr.Column():
                    self.selection_panel()

                # Output panel/leaderboard
                self.output_panel()

            self.synth_panel()
            self.byod_panel()
        
            # Register event listeners
            self.btn_execute.click(
                fn=self.benchmark_executor, inputs=[self.data, self.evaluation, self.nmodels, self.nrows, self.method],
                outputs=[self.leaderboard, self.bumpchart, self.eval_metrics]
            )

        return demo 
    
    def benchmark_executor(self, data, evaluation, nmodels, nrows, method) -> tuple[pd.DataFrame, plt.figure]:
        """ Main execution flow for benchmarks """
        
        #gr.Info(f"Loaded run config: {data}, {evaluation}, {nmodels}.")
        
        match data:
            case 'MMLU':
                adf = pd.read_pickle(f"data/mmlu_subject_abstract_algebra.pkl")
                MODELS = adf.model.unique()
            
            case 'CNN/DM':
                adf = pd.read_pickle(f"data/cnndm.pkl")
                MODELS = adf.model.unique()

            case 'XSUM': 
                raise NotImplementedError
            
            case _:
                raise ValueError(f"'{data}' not understood.")

        # Sample fewer models if so needed
        if nmodels is not None:
            if nmodels < len(MODELS):
    
                MODELS = np.random.choice(MODELS, nmodels, replace=False).tolist()
                adf = adf[adf.model.isin(MODELS)]

        match data:
            case 'MMLU':
                keys = ["id", "trial_id", "perturbation"] # MMLU has this extra parameter
            case 'CNN/DM':
                keys = ["id", "trial_id"]
            case _:
                pass

        df = adf.pivot_table(
                    columns="model",
                    index=keys,
                    values="output",
                    aggfunc="first",
                )

        # Filter by number of rows
        df.dropna(inplace=True)
        if nrows is not None:
            if nrows < df.shape[0]:
                df = df.sample(nrows)
        
        # Compute true ranking
        adf = adf.set_index(keys).loc[df.index].reset_index()

        if evaluation == "Rouge":

            def __true_rouge(x, scorer):
                return scorer.score(x["reference"], x["output"])["rouge2"].fmeasure

            scorer = rouge_scorer.RougeScorer(["rouge2"], use_stemmer=True)
            adf["rouge"] = Parallel(n_jobs=-1, batch_size=128)(
                delayed(__true_rouge)(i, scorer) for _, i in adf.iterrows()
            )
    
            # Method 2 - look at "win rates" - for each question, see which model
            # wins (i.e. has the best ROUGE score)
            idx = adf.groupby(["id", "trial_id"])["rouge"].idxmax()
            win_rates = adf.loc[idx].model.value_counts()
            win_rate_rank = win_rates.index.tolist()

            # include models with nowins at the bottom
            no_wins = list(set(MODELS) - set(win_rate_rank))
            true_ranking = win_rate_rank + no_wins
            evaluator = rouge
        
        elif evaluation == 'Equality':

            # Compute the true ranking (multiple choice - so use equality between
            # LLM response and reference-value)
            adf["C"] = (adf.output == adf.reference).astype(int)
            true_ranking = (
                adf.groupby("model")["C"]
                .apply(lambda x: sum(x) / len(x))
                .sort_values(ascending=False)
                .index.tolist()
            )
            evaluator = equality

        else:
            raise ValueError(f"'{evaluation}' not understood.")
        
        match method:
            case 'Full':
                ranker = SelfRank(MODELS, evaluator, true_ranking)
                
            case 'Greedy':
                ranker = SelfRankGreedy(MODELS, evaluator, true_ranking)
            
            case 'MCA':
                raise NotImplementedError
            case _:
                raise ValueError(f"'{method}' not understood.")
            
        
        # generate outputs
        ranker.fit(df)
        out_df = pd.DataFrame({'rank': range(1, len(true_ranking)+1), 'model': ranker.ranking})

        out_metrics = {"rbo": ranker.measure(metric="rbo"),
            "map-1": ranker.measure(metric="mapk", k=1),
            "map-3": ranker.measure(metric="mapk", k=3),
            "map-5": ranker.measure(metric="mapk", k=5),
            "map-10": ranker.measure(metric="mapk", k=10),
            "evaluations": evaluator.calls
        }
        eval_metrics = (f"Evaluation measures: <br>"
                        f"Rank-Biased Overlap: {out_metrics['rbo']:0.3f}<br>"
                        f"MAP-3              : {out_metrics['map-3']:0.3f}<br>"
                        f"MAP-5              : {out_metrics['map-5']:0.3f}<br>"
                        f"MAP-10             : {out_metrics['map-10']: 0.3f}.")

        out_plot = ranker.plot()
    
        return out_df, "output.png", eval_metrics


    def run(self):
        self.ui = self.layout()
        self.ui.queue().launch(show_error=True)


#if __name__ == "__main__":
ui = UI()
#ui.run() 
demo = ui.layout()
demo.launch()