Spaces:
Running
Running
File size: 9,436 Bytes
ab6548f 18e32a8 0ad8c9c 0de1d17 d39c67a 0de1d17 beff7ec d39c67a beff7ec 0de1d17 d39c67a beff7ec 18e32a8 beff7ec 0de1d17 18e32a8 beff7ec 0de1d17 18e32a8 beff7ec 18e32a8 beff7ec 0de1d17 18e32a8 0de1d17 18e32a8 0de1d17 18e32a8 0de1d17 18e32a8 beff7ec 0de1d17 beff7ec 0de1d17 beff7ec 0de1d17 beff7ec 0de1d17 beff7ec 18e32a8 0de1d17 beff7ec d39c67a beff7ec d39c67a beff7ec d39c67a beff7ec 0de1d17 beff7ec 0de1d17 18e32a8 0de1d17 beff7ec 0de1d17 18e32a8 beff7ec 0de1d17 18e32a8 0de1d17 18e32a8 0de1d17 18e32a8 0de1d17 0ad8c9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import gradio as gr
from executors import benchmark_executor, synth_executor
from gradio_rangeslider import RangeSlider
class UI:
def __init__(self):
"""Load any static assets"""
self.load_css()
def header_block(self):
"""Title/description"""
with open("assets/header.md", "r") as f:
content = f.read()
gr.Markdown(content)
gr.Markdown("---")
gr.Markdown("<br>")
def selection_panel(self):
"""user selections"""
gr.Markdown("""<h1 style='color: purple;'> Ranking with benchmarks </h1> """)
gr.Markdown(
"""Using inference data gathered from [HELM](https://crfm.stanford.edu/helm/classic/latest/) we first show how our estimated rankings compare to rankings derived from using ground-truth or reference data."""
)
with gr.Column(variant="compact"):
self.data = gr.Dropdown(
choices=["CNN/DM", "XSUM", "MMLU"],
multiselect=False,
value="CNN/DM",
label="Choose a dataset.",
info="The dataset describes a specific task, either summarization (CNN/DM, XSUM) or multiple choice (MMLU).",
interactive=True,
)
self.mmlu = gr.Dropdown(visible=False)
self.evaluation = gr.Dropdown(
choices=["Rouge", "Equality"],
multiselect=False,
value="Rouge",
interactive=True,
label="Evaluation function",
info="How should the Judge model decide the winner? Demo limited to use 'Rouge' for generative tasks like summarization, and 'equality' for multiple choice or classification tasks. In practice you can use any function that compares judge responses to the contestant models.",
)
def update_mmlu(v):
if v == "MMLU":
return gr.Dropdown(
choices=list(['abstract_algebra', 'college_chemistry', 'computer_security', 'econometrics', 'us_foreign_policy']),
value='us_foreign_policy',
multiselect=False,
label="Choose MMLU subject.",
info="MMLU subject area.",
interactive=True,
visible=True,
), gr.Dropdown(choices=['Equality'], value='Equality')
else:
return gr.Dropdown(visible=False), gr.Dropdown(choices=['Rouge'], value='Rouge')
self.data.change(fn=update_mmlu, inputs=self.data, outputs=[self.mmlu, self.evaluation])
self.nmodels = gr.Dropdown(
choices=["All", 10, 20, 30],
label="Number of models",
info="Sample a subset of LLMs to rank.",
value=10,
interactive=True,
)
self.nrows = gr.Dropdown(
choices=["All", 10, 20, 30],
label="Number of instances",
info="Sample a subset of instances to evaluate (smaller is faster).",
value=10,
interactive=True,
)
self.method = gr.Dropdown(
choices=["Greedy", "Full"],
label="Algorithm variant to use",
info="Choose from one of two variants. 'Full' (FTR in the paper) runs all triplet combinations, recommended when evaluations are cheap or for smaller datasets, or 'greedy' (GTR) a faster variant suggested for more complex evaluations.",
value="Full",
interactive=True,
)
self.btn_execute = gr.Button("Run")
def output_panel(self):
"""Plots/leaderboard/bump charts"""
with gr.Column(variant="default"):
gr.Markdown("""<h2 style='color: purple;'> Estimated ranking </h2> """)
self.leaderboard = gr.DataFrame(headers=["rank", "model"],
datatype=["number", "str"])
with gr.Column(variant="default"):
gr.Markdown(
"""<h2 style='color: purple;'> Comparison to 'true' ranking </h2> """
)
# self.bumpchart = gr.Plot(format='png')
self.bumpchart = gr.Image()
self.eval_metrics = gr.Markdown()
def synth_panel(self):
"""Synthetic data experiments"""
gr.Markdown("<br>")
gr.Markdown("---")
with open("assets/synth.md", "r") as f:
content = f.read()
gr.Markdown(content)
with gr.Row():
with gr.Column(scale=1):
with gr.Column(variant='compact'):
self.synth_range = RangeSlider(10, 100, value=(50, 90), step=1, label="Model Accuracy Range (%)", interactive=True)
self.synth_nmodels = gr.Slider(3, 50, value=10, step=1, label="Number of models to synthesise.", info="Equally spaced in the accuracy range.", interactive=True)
self.synth_nanswers = gr.Slider(2, 50, value=10, step=1, label="Number of possible (discrete) answers per prompt.", interactive=True)
self.synth_nquestions = gr.Slider(10, 100, step=10, label="Number of prompts to simulate.", interactive=True)
self.synth_noise = gr.Slider(0, 1, value=0, label='Noise in evaluation (p)', info="Evaluation function decisions flipped with probability p. p=0 implies no noise.", interactive=True)
self.synth_method = gr.Dropdown(
choices=["Greedy", "Full"],
label="Algorithm variant to use",
info="Choose from one of two variants. 'Full' (FTR in the paper) runs all triplet combinations, recommended when evaluations are cheap or for smaller datasets, or 'greedy' (GTR) a faster variant suggested for more complex evaluations.",
value="Full",
interactive=True,
)
examples = gr.Examples([[(10, 30), 10, 10, 10, 0, "Full"],
[(10, 30), 10, 10, 10, 0.5, "Full"],
[[10, 30], 10, 2, 10, 0, "Full"]],
[self.synth_range, self.synth_nmodels, self.synth_nanswers, self.synth_nquestions, self.synth_noise, self.synth_method],
label='Some interesting cases (click and run)', example_labels=["Rankings recovered for low accuracy models",
"Robust recovery when evaluations have noise",
"Binary outcomes are challenging"
] )
self.synth_execute = gr.Button("Run")
with gr.Column(scale=1):
with gr.Column(variant="default"):
gr.Markdown(
"""<h2 style='color: purple;'> Estimated vs. true ranking </h2> """
)
self.synth_bumpchart = gr.Image()
with gr.Column(scale=1):
self.synth_eval_metrics = gr.Markdown()
def byod_panel(self):
"""Instructions panel"""
gr.Markdown("<br>")
gr.Markdown("---")
with open("assets/instructions.md", "r") as f:
content = f.read()
gr.Markdown(content)
gr.Markdown("---")
def load_css(self):
with open("style.css", "r") as file:
self.css = file.read()
def layout(self):
"""Assemble the overall layout"""
with gr.Blocks(theme=gr.themes.Default()) as demo:
self.header_block()
with gr.Row():
# Selection panel
with gr.Column():
self.selection_panel()
# Output panel/leaderboard
self.output_panel()
self.synth_panel()
self.byod_panel()
# Register event listeners
self.btn_execute.click(
fn=benchmark_executor,
inputs=[
self.data,
self.mmlu,
self.evaluation,
self.nmodels,
self.nrows,
self.method,
],
outputs=[self.leaderboard, self.bumpchart, self.eval_metrics],
)
self.synth_execute.click(
fn=synth_executor,
inputs=[
self.synth_range,
self.synth_nmodels,
self.synth_nanswers,
self.synth_nquestions,
self.synth_noise,
self.synth_method,
],
outputs=[self.synth_bumpchart, self.synth_eval_metrics],
)
return demo
def run(self):
self.ui = self.layout()
self.ui.queue().launch(show_error=True)
if __name__ == "__main__":
ui = UI()
ui.run()
#demo = ui.layout()
#demo.launch()
|