Spaces:
Running
Running
File size: 9,723 Bytes
18e32a8 0ad8c9c 22c7d63 0ad8c9c 18e32a8 0ad8c9c 18e32a8 0ad8c9c 18e32a8 0ad8c9c 18e32a8 0ad8c9c 18e32a8 0ad8c9c 18e32a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import pandas as pd
import numpy as np
from rouge_score import rouge_scorer
from joblib import Parallel, delayed
from selfrank.algos.greedy import SelfRankGreedy
from selfrank.algos.iterative import SelfRank
from selfrank.algos.baseline import MCARank
from selfrank.algos.triplet import equality, rouge, noisy_equality
import matplotlib.pyplot as plt
from itertools import zip_longest
from uuid import uuid4
import csv, os
from functools import partial
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def generate_data(max_acc, min_acc, nmodels, nanswers, nquestions) -> tuple[pd.DataFrame, list]:
np.random.seed(42)
# Spread model accuracies between min and max
model_acc = np.linspace(max_acc, min_acc, nmodels)
gt_and_model_ans = np.zeros(
(nquestions, nmodels + 1), dtype=int
) # array to store ground truth and model ans
# Create ground truth answers i.e. first column
for i in range(nquestions):
gt_and_model_ans[i][0] = np.random.randint(nanswers)
for i in range(0, nmodels):
no_of_entries_frm_gt = np.ceil(model_acc[i] / 100 * (nquestions)).astype(int)
# print(no_of_entries_frm_gt)
offsets_to_match = np.random.permutation(nquestions)[0:no_of_entries_frm_gt]
# print(offsets_to_match)
for j in range(nquestions):
if j in offsets_to_match:
gt_and_model_ans[j][i + 1] = gt_and_model_ans[j][0]
else:
lst_wo_gt = list(range(nanswers))
lst_wo_gt.remove(gt_and_model_ans[j][0])
gt_and_model_ans[j][i + 1] = lst_wo_gt[np.random.randint(nanswers - 1)]
# print(gt_and_model_ans)
filename = str(uuid4())
fields = ["GT"]
for i in range(nmodels):
fields.append("M" + str(i + 1))
# writing to csv file
with open(filename, "w") as csvfile:
# creating a csv writer object
csvwriter = csv.writer(csvfile)
# writing the fields
csvwriter.writerow(fields)
# writing the data rows
csvwriter.writerows(gt_and_model_ans)
df = pd.read_csv(filename)
os.remove(filename)
true_ranking = [f"M{i}" for i in range(1, nmodels + 1)]
return df, true_ranking
def synth_executor(acc_range: tuple[float, float], nmodels, nanswers, nquestions, noise, method) -> tuple[str, dict]:
min_acc, max_acc = acc_range
logger.info(f"Synth experiment: min_acc:{min_acc}, max_acc:{max_acc}, nmodels: {nmodels}, nanswers: {nanswers}, nquestions: {nquestions}, noise:{noise}, method:{method}.")
df, true_ranking = generate_data(max_acc, min_acc, nmodels, nanswers, nquestions)
if noise == 0.:
comp = equality
else:
comp = partial(noisy_equality, p=noise)
df = df.drop(columns=["GT"])
MODELS = df.columns.tolist()
if method == "Full":
ranker = SelfRank(MODELS, comp, true_ranking)
ranker.fit(df)
# outputs of interest
out = {
"true_ranking": true_ranking,
"estimated_ranking": ranker.ranking,
"rbo": ranker.measure(metric="rbo"),
"map-1": ranker.measure(metric='mapk', k=1),
"map-3": ranker.measure(metric='mapk', k=3),
"map-5": ranker.measure(metric='mapk', k=5),
"map-10": ranker.measure(metric='mapk', k=10)
}
elif method == "Greedy":
ranker = SelfRankGreedy(MODELS, comp, true_ranking)
ranker.fit(df)
out = {
"true_ranking": true_ranking,
"estimated_ranking": ranker.ranking,
"rbo": ranker.measure(metric="rbo"),
"map-1": ranker.measure(metric='mapk', k=1),
"map-3": ranker.measure(metric='mapk', k=3),
"map-5": ranker.measure(metric='mapk', k=5),
"map-10": ranker.measure(metric='mapk', k=10)
}
elif method == 'MCA':
ranker = MCARank(MODELS, comp, true_ranking)
ranker.fit(df, measure='noisy_equality', p=noise)
out = {
"true_ranking": true_ranking,
"estimated_ranking": ranker.ranking,
"rbo": ranker.measure(metric="rbo"),
"map-1": ranker.measure(metric='mapk', k=1),
"map-3": ranker.measure(metric='mapk', k=3),
"map-5": ranker.measure(metric='mapk', k=5),
"map-10": ranker.measure(metric='mapk', k=10)
}
else:
raise ValueError(f"{method} not understood.")
eval_metrics = (
f"<h2 style='color: purple;'> Evaluation measures </h2>"
f"Rank-Biased Overlap: {out['rbo']:0.3f}<br>"
f"MAP-3 : {out['map-3']:0.3f}<br>"
f"MAP-5 : {out['map-5']:0.3f}<br>"
f"MAP-10 : {out['map-10']: 0.3f}."
)
out_plot = ranker.plot("synth")
plt.close(out_plot)
return "synth.png", eval_metrics
def benchmark_executor(data, mmlu_subject, evaluation, nmodels, nrows, method
) -> tuple[pd.DataFrame, plt.figure]:
"""Main execution flow for benchmarks"""
logger.info(f"Benchmark experiment: benchmark:{data}, mmlu subject: {mmlu_subject}, evaluation:{evaluation}, nmodels:{nmodels}, nquestions: {nrows}, method: {method}.")
seed = 40
np.random.seed(seed)
match data:
case "MMLU":
adf = pd.read_pickle(f"data/mmlu_subject_{mmlu_subject}.pkl")
case "CNN/DM":
adf = pd.read_pickle(f"data/cnndm.pkl")
case "XSUM":
adf = pd.read_pickle(f"data/xsum.pkl")
case _:
raise ValueError(f"'{data}' not understood.")
MODELS = adf.model.unique()
# Sample fewer models if so needed
if nmodels != "All":
if nmodels < len(MODELS):
MODELS = np.random.choice(MODELS, nmodels, replace=False).tolist()
adf = adf[adf.model.isin(MODELS)]
match data:
case "MMLU":
keys = [
"id",
"trial_id",
"perturbation",
] # MMLU has this extra parameter
case "CNN/DM" | "XSUM":
keys = ["id", "trial_id"]
case _:
pass
df = adf.pivot_table(
columns="model",
index=keys,
values="output",
aggfunc="first",
)
# Filter by number of rows
df.dropna(inplace=True)
if nrows != "All":
if nrows < df.shape[0]:
df = df.sample(nrows, random_state=seed)
# Compute true ranking
adf = adf.set_index(keys).loc[df.index].reset_index()
if evaluation == "Rouge":
def __true_rouge(x, scorer):
return scorer.score(x["reference"], x["output"])["rouge2"].fmeasure
scorer = rouge_scorer.RougeScorer(["rouge2"], use_stemmer=True)
adf["rouge"] = Parallel(n_jobs=-1, batch_size=128)(
delayed(__true_rouge)(i, scorer) for _, i in adf.iterrows()
)
# Method 2 - look at "win rates" - for each question, see which model
# wins (i.e. has the best ROUGE score)
idx = adf.groupby(["id", "trial_id"])["rouge"].idxmax()
win_rates = adf.loc[idx].model.value_counts()
win_rate_rank = win_rates.index.tolist()
# include models with nowins at the bottom
no_wins = list(set(MODELS) - set(win_rate_rank))
true_ranking = win_rate_rank + no_wins
evaluator = rouge
elif evaluation == "Equality":
# Compute the true ranking (multiple choice - so use equality between
# LLM response and reference-value)
adf["C"] = (adf.output == adf.reference).astype(int)
true_ranking = (
adf.groupby("model")["C"]
.apply(lambda x: sum(x) / len(x))
.sort_values(ascending=False)
.index.tolist()
)
evaluator = equality
else:
raise ValueError(f"'{evaluation}' not understood.")
match method:
case "Full":
ranker = SelfRank(MODELS, evaluator, true_ranking)
case "Greedy":
ranker = SelfRankGreedy(MODELS, evaluator, true_ranking)
case "MCA":
raise NotImplementedError
case _:
raise ValueError(f"'{method}' not understood.")
# generate outputs
ranker.fit(df)
ranks = ranker.ranking
ranks = [
j + i for i, j in zip_longest(ranks, ["π₯ ", "π₯ ", "π₯ "], fillvalue="")
]
out_df = pd.DataFrame({"rank": range(1, len(true_ranking) + 1), "model": ranks})
out_metrics = {
"rbo": ranker.measure(metric="rbo"),
"map-1": ranker.measure(metric="mapk", k=1),
"map-3": ranker.measure(metric="mapk", k=3),
"map-5": ranker.measure(metric="mapk", k=5),
"map-10": ranker.measure(metric="mapk", k=10),
"evaluations": evaluator.calls,
}
eval_metrics = (
f"<h2 style='color: purple;'> Evaluation measures </h2>"
f"Rank-Biased Overlap: {out_metrics['rbo']:0.3f}<br>"
f"MAP-3 : {out_metrics['map-3']:0.3f}<br>"
f"MAP-5 : {out_metrics['map-5']:0.3f}<br>"
f"MAP-10 : {out_metrics['map-10']: 0.3f}."
)
out_plot = ranker.plot()
plt.close(out_plot)
return out_df, "output.png", eval_metrics |