import gradio as gr
import pandas as pd
import numpy as np
from rouge_score import rouge_scorer
from joblib import Parallel, delayed
from selfrank.algos.greedy import SelfRankGreedy
from selfrank.algos.iterative import SelfRank
from selfrank.algos.baseline import MCARank
from selfrank.algos.triplet import equality, rouge
import matplotlib.pyplot as plt
class UI:
def __init__(self):
"""Load any static assets"""
pass
def header_block(self):
"""Title/description"""
gr.Markdown(
"""
🥇 Ranking LLMs without ground truth
"""
)
gr.Markdown(
"This space demonstrates reference-free ranking of large language models describe in our ACL Findings paper [Ranking Large Language Models without Ground Truth](https://arxiv.org/abs/2402.14860).
"
"Inspired by real life where both an expert and a knowledgeable person can identify a novice the main idea is to consider triplets of models, where each one of them evaluates the other two, correctly identifying the worst model in the triplet with high probability. Iteratively performing such evaluations yields a estimated ranking that doesn't require ground truth/reference data which can be expensive to gather. The methods are a viable low-resource ranking mechanism for practical use.
"
"[Source code](https://huggingface.co/spaces/ibm/llm-rank-themselves/tree/main).
"
)
gr.Markdown('---')
gr.Markdown('
')
def selection_panel(self):
"""user selections"""
gr.Markdown(""" Benchmark experiments
""")
with gr.Column(variant='compact'):
self.data = gr.Dropdown(
choices=["CNN/DM", "XSUM", "MMLU"],
multiselect=False, value='CNN/DM',
label="Choose a dataset.",
info="The dataset describes a task",
interactive=True,
)
self.evaluation = gr.Dropdown(
choices=["Rouge", "Equality"],
multiselect=False, value='Rouge',
interactive=True,
label="Evaluation function",
info="How should the Judge model decide the winner? Demo limited to use 'Rouge' for generative tasks like summarization, and 'equality' for multiple choice or classification tasks. In practice you can use any function that compares judge responses to the contestant models.",
)
self.nmodels = gr.Dropdown(
choices=[None, 10, 20, 30],
label="Number of models",
info="Sample a subset of LLMs to rank.",
value=10,
interactive=True,
)
self.nrows = gr.Dropdown(
choices=[None, 10, 20, 30],
label="Number of instances",
info="Sample a subset of instances to evaluate (smaller is faster).",
value=10,
interactive=True,
)
self.method = gr.Dropdown(
choices=["Greedy", "Full"],
label="Algorithm variant to use",
info="Choose from one of two variants. 'Full' (FTR in the paper) runs all triplet combinations, recommended when evaluations are cheap or for smaller datasets, or 'greedy' (GTR) a faster variant suggested for more complex evaluations.",
value='Full',
interactive=True,
)
self.btn_execute = gr.Button("Run")
def output_panel(self):
"""Plots/leaderboard/bump charts"""
with gr.Column(variant='default'):
gr.Markdown(""" Estimated ranking
""")
self.leaderboard = gr.DataFrame()
with gr.Column(variant='default'):
gr.Markdown(""" Comparison to 'true' ranking
""")
#self.bumpchart = gr.Plot(format='png')
self.bumpchart = gr.Image()
self.eval_metrics = gr.Markdown()
def synth_panel(self):
""" Synthetic data experiments """
gr.Markdown('
')
gr.Markdown('---')
gr.Markdown("""Synthetic multiple choice
""")
def byod_panel(self):
""" Synthetic data experiments """
gr.Markdown('
')
gr.Markdown('---')
gr.Markdown("""BYOD
""")
def layout(self):
""" Assemble the overall layout """
with gr.Blocks(theme=gr.themes.Default()) as demo:
self.header_block()
with gr.Row():
# Selection panel
with gr.Column():
self.selection_panel()
# Output panel/leaderboard
self.output_panel()
self.synth_panel()
self.byod_panel()
# Register event listeners
self.btn_execute.click(
fn=self.benchmark_executor, inputs=[self.data, self.evaluation, self.nmodels, self.nrows, self.method],
outputs=[self.leaderboard, self.bumpchart, self.eval_metrics]
)
return demo
def benchmark_executor(self, data, evaluation, nmodels, nrows, method) -> tuple[pd.DataFrame, plt.figure]:
""" Main execution flow for benchmarks """
#gr.Info(f"Loaded run config: {data}, {evaluation}, {nmodels}.")
match data:
case 'MMLU':
adf = pd.read_pickle(f"data/mmlu_subject_abstract_algebra.pkl")
MODELS = adf.model.unique()
case 'CNN/DM':
adf = pd.read_pickle(f"data/cnndm.pkl")
MODELS = adf.model.unique()
case 'XSUM':
raise NotImplementedError
case _:
raise ValueError(f"'{data}' not understood.")
# Sample fewer models if so needed
if nmodels is not None:
if nmodels < len(MODELS):
MODELS = np.random.choice(MODELS, nmodels, replace=False).tolist()
adf = adf[adf.model.isin(MODELS)]
match data:
case 'MMLU':
keys = ["id", "trial_id", "perturbation"] # MMLU has this extra parameter
case 'CNN/DM':
keys = ["id", "trial_id"]
case _:
pass
df = adf.pivot_table(
columns="model",
index=keys,
values="output",
aggfunc="first",
)
# Filter by number of rows
df.dropna(inplace=True)
if nrows is not None:
if nrows < df.shape[0]:
df = df.sample(nrows)
# Compute true ranking
adf = adf.set_index(keys).loc[df.index].reset_index()
if evaluation == "Rouge":
def __true_rouge(x, scorer):
return scorer.score(x["reference"], x["output"])["rouge2"].fmeasure
scorer = rouge_scorer.RougeScorer(["rouge2"], use_stemmer=True)
adf["rouge"] = Parallel(n_jobs=-1, batch_size=128)(
delayed(__true_rouge)(i, scorer) for _, i in adf.iterrows()
)
# Method 2 - look at "win rates" - for each question, see which model
# wins (i.e. has the best ROUGE score)
idx = adf.groupby(["id", "trial_id"])["rouge"].idxmax()
win_rates = adf.loc[idx].model.value_counts()
win_rate_rank = win_rates.index.tolist()
# include models with nowins at the bottom
no_wins = list(set(MODELS) - set(win_rate_rank))
true_ranking = win_rate_rank + no_wins
evaluator = rouge
elif evaluation == 'Equality':
# Compute the true ranking (multiple choice - so use equality between
# LLM response and reference-value)
adf["C"] = (adf.output == adf.reference).astype(int)
true_ranking = (
adf.groupby("model")["C"]
.apply(lambda x: sum(x) / len(x))
.sort_values(ascending=False)
.index.tolist()
)
evaluator = equality
else:
raise ValueError(f"'{evaluation}' not understood.")
match method:
case 'Full':
ranker = SelfRank(MODELS, evaluator, true_ranking)
case 'Greedy':
ranker = SelfRankGreedy(MODELS, evaluator, true_ranking)
case 'MCA':
raise NotImplementedError
case _:
raise ValueError(f"'{method}' not understood.")
# generate outputs
ranker.fit(df)
out_df = pd.DataFrame({'rank': range(1, len(true_ranking)+1), 'model': ranker.ranking})
out_metrics = {"rbo": ranker.measure(metric="rbo"),
"map-1": ranker.measure(metric="mapk", k=1),
"map-3": ranker.measure(metric="mapk", k=3),
"map-5": ranker.measure(metric="mapk", k=5),
"map-10": ranker.measure(metric="mapk", k=10),
"evaluations": evaluator.calls
}
eval_metrics = (f"Evaluation measures:
"
f"Rank-Biased Overlap: {out_metrics['rbo']:0.3f}
"
f"MAP-3 : {out_metrics['map-3']:0.3f}
"
f"MAP-5 : {out_metrics['map-5']:0.3f}
"
f"MAP-10 : {out_metrics['map-10']: 0.3f}.")
out_plot = ranker.plot()
return out_df, "output.png", eval_metrics
def run(self):
self.ui = self.layout()
self.ui.queue().launch(show_error=True)
#if __name__ == "__main__":
ui = UI()
#ui.run()
demo = ui.layout()
demo.launch()