import gradio as gr import pandas as pd import numpy as np from rouge_score import rouge_scorer from joblib import Parallel, delayed from selfrank.algos.greedy import SelfRankGreedy from selfrank.algos.iterative import SelfRank from selfrank.algos.baseline import MCARank from selfrank.algos.triplet import equality, rouge import matplotlib.pyplot as plt class UI: def __init__(self): """Load any static assets""" self.load_css() def header_block(self): """Title/description""" with open("assets/header.md", 'r') as f: content = f.read() gr.Markdown(content) gr.Markdown('---') gr.Markdown('
') def selection_panel(self): """user selections""" gr.Markdown("""

Ranking with benchmarks

""") gr.Markdown("""Using inference data gathered from [HELM](https://crfm.stanford.edu/helm/classic/latest/) we first show how our estimated rankings compare to rankings derived from using ground-truth or reference data.""") with gr.Column(variant='compact'): self.data = gr.Dropdown( choices=["CNN/DM", "XSUM", "MMLU"], multiselect=False, value='CNN/DM', label="Choose a dataset.", info="The dataset describes a specific task, either summarization (CNN/DM, XSUM) or multiple choice (MMLU).", interactive=True, ) self.evaluation = gr.Dropdown( choices=["Rouge", "Equality"], multiselect=False, value='Rouge', interactive=True, label="Evaluation function", info="How should the Judge model decide the winner? Demo limited to use 'Rouge' for generative tasks like summarization, and 'equality' for multiple choice or classification tasks. In practice you can use any function that compares judge responses to the contestant models.", ) self.nmodels = gr.Dropdown( choices=["All", 10, 20, 30], label="Number of models", info="Sample a subset of LLMs to rank.", value=10, interactive=True, ) self.nrows = gr.Dropdown( choices=["All", 10, 20, 30], label="Number of instances", info="Sample a subset of instances to evaluate (smaller is faster).", value=10, interactive=True, ) self.method = gr.Dropdown( choices=["Greedy", "Full"], label="Algorithm variant to use", info="Choose from one of two variants. 'Full' (FTR in the paper) runs all triplet combinations, recommended when evaluations are cheap or for smaller datasets, or 'greedy' (GTR) a faster variant suggested for more complex evaluations.", value='Full', interactive=True, ) self.btn_execute = gr.Button("Run") def output_panel(self): """Plots/leaderboard/bump charts""" with gr.Column(variant='default'): gr.Markdown("""

Estimated ranking

""") self.leaderboard = gr.DataFrame() with gr.Column(variant='default'): gr.Markdown("""

Comparison to 'true' ranking

""") #self.bumpchart = gr.Plot(format='png') self.bumpchart = gr.Image() self.eval_metrics = gr.Markdown() def synth_panel(self): """ Synthetic data experiments """ gr.Markdown('
') gr.Markdown('---') gr.Markdown("""

Synthetic multiple choice

""") gr.Markdown("Coming soon.") def byod_panel(self): """ Instructions panel """ gr.Markdown('
') gr.Markdown('---') with open("assets/instructions.md", 'r') as f: content = f.read() gr.Markdown(content) gr.Markdown('---') def load_css(self): with open('style.css', 'r') as file: self.css = file.read() def layout(self): """ Assemble the overall layout """ with gr.Blocks(theme=gr.themes.Default()) as demo: self.header_block() with gr.Row(): # Selection panel with gr.Column(): self.selection_panel() # Output panel/leaderboard self.output_panel() #TODO: self.synth_panel() self.byod_panel() # Register event listeners self.btn_execute.click( fn=self.benchmark_executor, inputs=[self.data, self.evaluation, self.nmodels, self.nrows, self.method], outputs=[self.leaderboard, self.bumpchart, self.eval_metrics] ) return demo def benchmark_executor(self, data, evaluation, nmodels, nrows, method) -> tuple[pd.DataFrame, plt.figure]: """ Main execution flow for benchmarks """ #gr.Info(f"Loaded run config: {data}, {evaluation}, {nmodels}.") seed = 40 np.random.seed(seed) match data: case 'MMLU': adf = pd.read_pickle(f"data/mmlu_subject_abstract_algebra.pkl") MODELS = adf.model.unique() case 'CNN/DM': adf = pd.read_pickle(f"data/cnndm.pkl") MODELS = adf.model.unique() case 'XSUM': raise NotImplementedError case _: raise ValueError(f"'{data}' not understood.") # Sample fewer models if so needed if nmodels != "All": if nmodels < len(MODELS): MODELS = np.random.choice(MODELS, nmodels, replace=False).tolist() adf = adf[adf.model.isin(MODELS)] match data: case 'MMLU': keys = ["id", "trial_id", "perturbation"] # MMLU has this extra parameter case 'CNN/DM': keys = ["id", "trial_id"] case _: pass df = adf.pivot_table( columns="model", index=keys, values="output", aggfunc="first", ) # Filter by number of rows df.dropna(inplace=True) if nrows != "All": if nrows < df.shape[0]: df = df.sample(nrows, random_state=seed) # Compute true ranking adf = adf.set_index(keys).loc[df.index].reset_index() if evaluation == "Rouge": def __true_rouge(x, scorer): return scorer.score(x["reference"], x["output"])["rouge2"].fmeasure scorer = rouge_scorer.RougeScorer(["rouge2"], use_stemmer=True) adf["rouge"] = Parallel(n_jobs=-1, batch_size=128)( delayed(__true_rouge)(i, scorer) for _, i in adf.iterrows() ) # Method 2 - look at "win rates" - for each question, see which model # wins (i.e. has the best ROUGE score) idx = adf.groupby(["id", "trial_id"])["rouge"].idxmax() win_rates = adf.loc[idx].model.value_counts() win_rate_rank = win_rates.index.tolist() # include models with nowins at the bottom no_wins = list(set(MODELS) - set(win_rate_rank)) true_ranking = win_rate_rank + no_wins evaluator = rouge elif evaluation == 'Equality': # Compute the true ranking (multiple choice - so use equality between # LLM response and reference-value) adf["C"] = (adf.output == adf.reference).astype(int) true_ranking = ( adf.groupby("model")["C"] .apply(lambda x: sum(x) / len(x)) .sort_values(ascending=False) .index.tolist() ) evaluator = equality else: raise ValueError(f"'{evaluation}' not understood.") match method: case 'Full': ranker = SelfRank(MODELS, evaluator, true_ranking) case 'Greedy': ranker = SelfRankGreedy(MODELS, evaluator, true_ranking) case 'MCA': raise NotImplementedError case _: raise ValueError(f"'{method}' not understood.") # generate outputs ranker.fit(df) ranks = ranker.ranking from itertools import zip_longest ranks = [j + i for i, j in zip_longest(ranks, ["🥇 ", "🥈 ", "🥉 "], fillvalue='')] out_df = pd.DataFrame({'rank': range(1, len(true_ranking)+1), 'model': ranks}) out_metrics = {"rbo": ranker.measure(metric="rbo"), "map-1": ranker.measure(metric="mapk", k=1), "map-3": ranker.measure(metric="mapk", k=3), "map-5": ranker.measure(metric="mapk", k=5), "map-10": ranker.measure(metric="mapk", k=10), "evaluations": evaluator.calls } eval_metrics = (f"

Evaluation measures

" f"Rank-Biased Overlap: {out_metrics['rbo']:0.3f}
" f"MAP-3 : {out_metrics['map-3']:0.3f}
" f"MAP-5 : {out_metrics['map-5']:0.3f}
" f"MAP-10 : {out_metrics['map-10']: 0.3f}.") out_plot = ranker.plot() return out_df, "output.png", eval_metrics def run(self): self.ui = self.layout() self.ui.queue().launch(show_error=True) #if __name__ == "__main__": ui = UI() #ui.run() demo = ui.layout() demo.launch()