ibrahim313's picture
Update app.py
a0d6076 verified
raw
history blame
8.6 kB
import cv2
import numpy as np
import pandas as pd
import gradio as gr
from skimage import measure, morphology
from skimage.segmentation import watershed
import matplotlib.pyplot as plt
import base64
from datetime import datetime
def apply_color_transformation(image, transform_type):
"""Apply different color transformations to the image"""
try:
# Convert to BGR if needed
if len(image.shape) == 3 and image.shape[2] == 3:
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if transform_type == "Original":
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if len(image.shape) == 3 else image
elif transform_type == "Grayscale":
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
elif transform_type == "Binary":
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
_, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
return binary
elif transform_type == "CLAHE":
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
return clahe.apply(gray)
return image
except Exception as e:
print(f"Transformation error: {str(e)}")
return None
def process_image(image, transform_type):
"""Process uploaded image and extract cell features"""
try:
if image is None:
return [None]*4
# Store original image for color transformations
original_image = image.copy()
# Convert to BGR for OpenCV processing
if len(image.shape) == 3:
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Preprocessing pipeline
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
enhanced = clahe.apply(gray)
blurred = cv2.medianBlur(enhanced, 5)
# Thresholding
_, thresh = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# Noise removal
kernel = np.ones((3,3), np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)
# Sure background area
sure_bg = cv2.dilate(opening, kernel, iterations=3)
# Finding sure foreground area
dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
_, sure_fg = cv2.threshold(dist_transform, 0.7*dist_transform.max(), 255, 0)
sure_fg = np.uint8(sure_fg)
# Unknown region
unknown = cv2.subtract(sure_bg, sure_fg)
# Marker labelling
_, markers = cv2.connectedComponents(sure_fg)
markers += 1
markers[unknown == 255] = 0
# Watershed algorithm
markers = cv2.watershed(image, markers)
# Feature extraction
features = []
vis_img = image.copy()
for region in measure.regionprops(markers):
if region.area >= 50:
y, x = region.centroid
# Store features
features.append({
'label': region.label,
'area': region.area,
'circularity': (4 * np.pi * region.area) / (region.perimeter ** 2) if region.perimeter > 0 else 0,
'mean_intensity': region.mean_intensity
})
# Draw text with contrast
cv2.putText(vis_img, str(region.label), (int(x), int(y)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 2)
cv2.putText(vis_img, str(region.label), (int(x), int(y)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,255), 1)
# Convert visualization image back to RGB
vis_img = cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB)
# Create analysis plots
plt.style.use('seaborn')
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
fig.suptitle('Cell Analysis Results', fontsize=16, y=0.95)
df = pd.DataFrame(features)
if not df.empty:
# Distribution plots
df['area'].hist(ax=axes[0,0], bins=20, color='skyblue', edgecolor='black')
axes[0,0].set_title('Cell Size Distribution')
df['circularity'].hist(ax=axes[0,1], bins=20, color='lightgreen', edgecolor='black')
axes[0,1].set_title('Circularity Distribution')
# Scatter plot
axes[1,0].scatter(df['circularity'], df['mean_intensity'], alpha=0.6, c='purple')
axes[1,0].set_title('Circularity vs Intensity')
# Box plot
df.boxplot(column=['area', 'circularity'], ax=axes[1,1])
else:
for ax in axes.flat:
ax.text(0.5, 0.5, 'No cells detected', ha='center', va='center')
plt.tight_layout()
# Apply color transformation
transformed_img = apply_color_transformation(original_image, transform_type)
if transformed_img is not None and len(transformed_img.shape) == 2:
transformed_img = cv2.cvtColor(transformed_img, cv2.COLOR_GRAY2RGB)
return (
vis_img,
transformed_img if transformed_img is not None else original_image,
fig,
df
)
except Exception as e:
print(f"Processing error: {str(e)}")
return [None]*4
# Create enhanced Gradio interface
with gr.Blocks(title="Advanced Cell Analysis Tool", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# πŸ”¬ Advanced Bioengineering Cell Analysis Tool
## Features
- πŸ” Automated cell detection and measurement
- πŸ“Š Comprehensive statistical analysis
- 🎨 Multiple visualization options
- πŸ“₯ Downloadable results
## Author
- **Muhammad Ibrahim Qasmi**
- [LinkedIn](https://www.linkedin.com/in/muhammad-ibrahim-qasmi-9876a1297/)
- [GitHub](https://github.com/yourusername) <!-- Add your GitHub URL -->
""")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
label="Upload Image",
type="numpy"
)
transform_type = gr.Dropdown(
choices=["Original", "Grayscale", "Binary", "CLAHE"],
value="Original",
label="Image Transform"
)
analyze_btn = gr.Button(
"Analyze Image",
variant="primary",
size="lg"
)
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("Analysis Results"):
output_image = gr.Image(
label="Detected Cells"
)
gr.Markdown("*Green contours show detected cells, red numbers are cell IDs*")
with gr.Tab("Image Transformations"):
transformed_image = gr.Image(
label="Transformed Image"
)
gr.Markdown("*Select different transformations from the dropdown menu*")
with gr.Tab("Statistics"):
output_plot = gr.Plot(
label="Statistical Analysis"
)
gr.Markdown("*Hover over plots for detailed values*")
with gr.Tab("Data"):
output_table = gr.DataFrame(
label="Cell Features"
)
download_btn = gr.Button(
"Download Results",
variant="secondary"
)
# Add footer
gr.Markdown("""
---
### πŸ“ Notes
- Supported image formats: PNG, JPG, JPEG
- Minimum recommended resolution: 512x512 pixels
- Processing time varies with image size and cell count
*Last updated: January 2025*
""")
analyze_btn.click(
fn=process_image,
inputs=[input_image, transform_type],
outputs=[output_image, transformed_image, output_plot, output_table]
)
# Launch the demo
if __name__ == "__main__":
try:
demo.launch()
except Exception as e:
print(f"Error launching Gradio interface: {e}")