Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,63 @@
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
|
|
4 |
from collections import Counter
|
5 |
from ultralytics import YOLO
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
|
8 |
-
# Download model from Hugging Face
|
9 |
-
MODEL_PATH = hf_hub_download(
|
10 |
-
|
11 |
-
|
12 |
-
)
|
13 |
|
14 |
-
# Load the
|
15 |
-
model = YOLO(
|
16 |
|
17 |
-
def
|
18 |
-
|
|
|
19 |
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
20 |
|
21 |
-
# Perform
|
22 |
results = model.predict(source=image_rgb, imgsz=640, conf=0.25)
|
23 |
|
24 |
-
# Get
|
25 |
annotated_img = results[0].plot()
|
26 |
|
27 |
# Extract detection data
|
28 |
detections = results[0].boxes.data if results[0].boxes is not None else []
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
|
|
37 |
app = gr.Interface(
|
38 |
-
|
39 |
inputs=gr.Image(type="numpy", label="Upload an Image"),
|
40 |
-
outputs=[
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
43 |
)
|
44 |
|
45 |
-
app.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
from collections import Counter
|
6 |
from ultralytics import YOLO
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
|
9 |
+
# # Download YOLOv10 model from Hugging Face
|
10 |
+
# MODEL_PATH = hf_hub_download(
|
11 |
+
# repo_id="ibrahim313/Bioengineering_Query_Tool_image_based",
|
12 |
+
# filename="best.pt"
|
13 |
+
# )
|
14 |
|
15 |
+
# Load the model
|
16 |
+
model = YOLO("best.pt")
|
17 |
|
18 |
+
def process_image(image):
|
19 |
+
"""Detect cells in the image, extract attributes, and return results."""
|
20 |
+
# Convert image to RGB
|
21 |
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
22 |
|
23 |
+
# Perform detection
|
24 |
results = model.predict(source=image_rgb, imgsz=640, conf=0.25)
|
25 |
|
26 |
+
# Get annotated image
|
27 |
annotated_img = results[0].plot()
|
28 |
|
29 |
# Extract detection data
|
30 |
detections = results[0].boxes.data if results[0].boxes is not None else []
|
31 |
+
if len(detections) > 0:
|
32 |
+
class_names = [model.names[int(cls)] for cls in detections[:, 5]]
|
33 |
+
count = Counter(class_names)
|
34 |
+
detection_str = ', '.join([f"{name}: {count[name]}" for name in count])
|
35 |
+
|
36 |
+
# Extract cell attributes (position, size, etc.)
|
37 |
+
df = pd.DataFrame(detections.numpy(), columns=["x_min", "y_min", "x_max", "y_max", "confidence", "class"])
|
38 |
+
df["class_name"] = df["class"].apply(lambda x: model.names[int(x)])
|
39 |
+
df["width"] = df["x_max"] - df["x_min"]
|
40 |
+
df["height"] = df["y_max"] - df["y_min"]
|
41 |
+
df["area"] = df["width"] * df["height"]
|
42 |
+
|
43 |
+
summary = df.groupby("class_name")["area"].describe().reset_index()
|
44 |
+
else:
|
45 |
+
detection_str = "No detections"
|
46 |
+
summary = pd.DataFrame(columns=["class_name", "count", "mean", "std", "min", "25%", "50%", "75%", "max"])
|
47 |
+
|
48 |
+
return annotated_img, detection_str, summary
|
49 |
|
50 |
+
# Create Gradio interface
|
51 |
app = gr.Interface(
|
52 |
+
fn=process_image,
|
53 |
inputs=gr.Image(type="numpy", label="Upload an Image"),
|
54 |
+
outputs=[
|
55 |
+
gr.Image(type="numpy", label="Annotated Image"),
|
56 |
+
gr.Textbox(label="Detection Counts"),
|
57 |
+
gr.Dataframe(label="Cell Statistics")
|
58 |
+
],
|
59 |
+
title="Bioengineering Image Analysis Tool",
|
60 |
+
description="Upload an image to detect and analyze bioengineering cells using YOLOv10."
|
61 |
)
|
62 |
|
63 |
+
app.launch()
|