Update app.py
Browse files
app.py
CHANGED
@@ -1,109 +1,91 @@
|
|
|
|
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import gradio as gr
|
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def preprocess_image(image):
|
9 |
-
"""
|
10 |
if len(image.shape) == 2:
|
11 |
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
|
12 |
-
|
13 |
-
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
14 |
-
|
15 |
-
# Apply Gaussian blur to remove noise
|
16 |
-
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
|
17 |
-
|
18 |
-
# Otsu's Thresholding (more robust than adaptive for blood cells)
|
19 |
-
_, binary = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
|
20 |
-
|
21 |
-
# Morphological operations to improve segmentation
|
22 |
-
kernel = np.ones((3, 3), np.uint8)
|
23 |
-
clean_mask = cv2.morphologyEx(binary, cv2.MORPH_CLOSE, kernel, iterations=2)
|
24 |
-
clean_mask = cv2.morphologyEx(clean_mask, cv2.MORPH_OPEN, kernel, iterations=1)
|
25 |
-
|
26 |
-
return clean_mask
|
27 |
|
28 |
def detect_blood_cells(image):
|
29 |
-
"""Detect blood cells
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
features = []
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
cell_density = len(features) / (image.shape[0] * image.shape[1]) # Density per pixel
|
56 |
-
|
57 |
-
summary = {
|
58 |
-
'Total Cells': len(features),
|
59 |
-
'Avg Cell Size': avg_cell_size,
|
60 |
-
'Cell Density': cell_density
|
61 |
-
}
|
62 |
-
|
63 |
-
return contours, features, mask, summary
|
64 |
|
65 |
def process_image(image):
|
66 |
if image is None:
|
67 |
-
return None, None, None, None
|
68 |
|
69 |
-
contours, features,
|
70 |
vis_img = image.copy()
|
71 |
|
72 |
for feature in features:
|
73 |
-
contour = contours[feature['
|
74 |
cv2.drawContours(vis_img, [contour], -1, (0, 255, 0), 2)
|
75 |
-
cv2.putText(vis_img, str(feature['
|
76 |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
|
77 |
|
78 |
df = pd.DataFrame(features)
|
79 |
-
return vis_img,
|
80 |
|
81 |
def analyze(image):
|
82 |
-
vis_img, mask, df
|
83 |
|
84 |
plt.style.use('dark_background')
|
85 |
fig, axes = plt.subplots(1, 2, figsize=(12, 5))
|
86 |
|
87 |
if not df.empty:
|
88 |
-
axes[0].hist(df['
|
89 |
axes[0].set_title('Cell Size Distribution')
|
90 |
|
91 |
-
axes[1].scatter(df['
|
92 |
axes[1].set_title('Area vs Circularity')
|
93 |
|
94 |
-
return vis_img, mask, fig, df
|
95 |
|
96 |
# Gradio Interface
|
97 |
-
demo = gr.Interface(
|
98 |
-
fn=analyze,
|
99 |
-
inputs=gr.Image(type="numpy"),
|
100 |
-
outputs=[
|
101 |
-
gr.Image(label="Processed Image"),
|
102 |
-
gr.Image(label="Binary Mask"),
|
103 |
-
gr.Plot(label="Analysis Plots"),
|
104 |
-
gr.Dataframe(label="Detected Cells Data"),
|
105 |
-
gr.JSON(label="Summary Statistics")
|
106 |
-
]
|
107 |
-
)
|
108 |
-
|
109 |
demo.launch()
|
|
|
1 |
+
from segment_anything import sam_model_registry, SamPredictor
|
2 |
+
import torch
|
3 |
import cv2
|
4 |
import numpy as np
|
|
|
5 |
import gradio as gr
|
6 |
+
import pandas as pd
|
7 |
import matplotlib.pyplot as plt
|
8 |
+
|
9 |
+
# Load SAM model
|
10 |
+
sam_checkpoint = "sam_vit_h.pth" # Checkpoint file (download it from Meta AI)
|
11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
model_type = "vit_h"
|
13 |
+
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device)
|
14 |
+
predictor = SamPredictor(sam)
|
15 |
|
16 |
def preprocess_image(image):
|
17 |
+
"""Convert image to RGB format for SAM."""
|
18 |
if len(image.shape) == 2:
|
19 |
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
|
20 |
+
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def detect_blood_cells(image):
|
23 |
+
"""Detect blood cells using SAM."""
|
24 |
+
image = preprocess_image(image)
|
25 |
+
predictor.set_image(image)
|
26 |
+
|
27 |
+
# Generate automatic masks (SAM can also take prompts for guided segmentation)
|
28 |
+
masks, _, _ = predictor.predict(
|
29 |
+
point_coords=None,
|
30 |
+
point_labels=None,
|
31 |
+
multimask_output=True
|
32 |
+
)
|
33 |
+
|
34 |
+
contours_list = []
|
35 |
features = []
|
36 |
+
for i, mask in enumerate(masks):
|
37 |
+
mask = mask.astype(np.uint8) * 255 # Convert boolean mask to uint8
|
38 |
+
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
39 |
+
|
40 |
+
for j, contour in enumerate(contours, 1):
|
41 |
+
area = cv2.contourArea(contour)
|
42 |
+
perimeter = cv2.arcLength(contour, True)
|
43 |
+
circularity = 4 * np.pi * area / (perimeter * perimeter) if perimeter > 0 else 0
|
44 |
+
|
45 |
+
if 100 < area < 5000 and circularity > 0.7:
|
46 |
+
M = cv2.moments(contour)
|
47 |
+
if M["m00"] != 0:
|
48 |
+
cx = int(M["m10"] / M["m00"])
|
49 |
+
cy = int(M["m01"] / M["m00"])
|
50 |
+
features.append({
|
51 |
+
'label': f"{i}-{j}", 'area': area, 'perimeter': perimeter,
|
52 |
+
'circularity': circularity, 'centroid_x': cx, 'centroid_y': cy
|
53 |
+
})
|
54 |
+
contours_list.append(contour)
|
55 |
+
|
56 |
+
return contours_list, features, masks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
def process_image(image):
|
59 |
if image is None:
|
60 |
+
return None, None, None, None
|
61 |
|
62 |
+
contours, features, masks = detect_blood_cells(image)
|
63 |
vis_img = image.copy()
|
64 |
|
65 |
for feature in features:
|
66 |
+
contour = contours[int(feature['label'].split('-')[1]) - 1]
|
67 |
cv2.drawContours(vis_img, [contour], -1, (0, 255, 0), 2)
|
68 |
+
cv2.putText(vis_img, str(feature['label']), (feature['centroid_x'], feature['centroid_y']),
|
69 |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
|
70 |
|
71 |
df = pd.DataFrame(features)
|
72 |
+
return vis_img, masks[0], df
|
73 |
|
74 |
def analyze(image):
|
75 |
+
vis_img, mask, df = process_image(image)
|
76 |
|
77 |
plt.style.use('dark_background')
|
78 |
fig, axes = plt.subplots(1, 2, figsize=(12, 5))
|
79 |
|
80 |
if not df.empty:
|
81 |
+
axes[0].hist(df['area'], bins=20, color='cyan', edgecolor='black')
|
82 |
axes[0].set_title('Cell Size Distribution')
|
83 |
|
84 |
+
axes[1].scatter(df['area'], df['circularity'], alpha=0.6, c='magenta')
|
85 |
axes[1].set_title('Area vs Circularity')
|
86 |
|
87 |
+
return vis_img, mask, fig, df
|
88 |
|
89 |
# Gradio Interface
|
90 |
+
demo = gr.Interface(fn=analyze, inputs=gr.Image(type="numpy"), outputs=[gr.Image(), gr.Image(), gr.Plot(), gr.Dataframe()])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
demo.launch()
|