Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import gradio as gr
|
5 |
+
from skimage import measure, morphology
|
6 |
+
from skimage.segmentation import watershed
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
|
9 |
+
def process_image(image):
|
10 |
+
"""Process uploaded image and extract cell features"""
|
11 |
+
# Convert to BGR if image is RGB
|
12 |
+
if len(image.shape) == 3:
|
13 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
14 |
+
|
15 |
+
# Basic preprocessing
|
16 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
17 |
+
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
|
18 |
+
enhanced = clahe.apply(gray)
|
19 |
+
blurred = cv2.medianBlur(enhanced, 5)
|
20 |
+
|
21 |
+
# Segmentation
|
22 |
+
thresh = cv2.adaptiveThreshold(
|
23 |
+
blurred, 255,
|
24 |
+
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
25 |
+
cv2.THRESH_BINARY_INV, 21, 4
|
26 |
+
)
|
27 |
+
|
28 |
+
# Clean small noise
|
29 |
+
cleaned = morphology.opening(thresh, morphology.disk(2))
|
30 |
+
|
31 |
+
# Watershed segmentation
|
32 |
+
sure_bg = cv2.dilate(cleaned, morphology.disk(3), iterations=3)
|
33 |
+
dist = cv2.distanceTransform(cleaned, cv2.DIST_L2, 5)
|
34 |
+
ret, sure_fg = cv2.threshold(dist, 0.5*dist.max(), 255, 0)
|
35 |
+
sure_fg = np.uint8(sure_fg)
|
36 |
+
unknown = cv2.subtract(sure_bg, sure_fg)
|
37 |
+
|
38 |
+
# Marker labelling
|
39 |
+
ret, markers = cv2.connectedComponents(sure_fg)
|
40 |
+
markers += 1
|
41 |
+
markers[unknown == 255] = 0
|
42 |
+
markers = watershed(-dist, markers, mask=cleaned)
|
43 |
+
|
44 |
+
# Extract features
|
45 |
+
features = []
|
46 |
+
props = measure.regionprops(markers, intensity_image=gray)
|
47 |
+
|
48 |
+
for i, prop in enumerate(props):
|
49 |
+
if prop.area < 50: # Filter small regions
|
50 |
+
continue
|
51 |
+
|
52 |
+
features.append({
|
53 |
+
'cell_id': i+1,
|
54 |
+
'area': prop.area,
|
55 |
+
'perimeter': prop.perimeter,
|
56 |
+
'circularity': (4 * np.pi * prop.area) / (prop.perimeter**2 + 1e-6),
|
57 |
+
'mean_intensity': prop.mean_intensity,
|
58 |
+
'centroid_x': prop.centroid[1],
|
59 |
+
'centroid_y': prop.centroid[0]
|
60 |
+
})
|
61 |
+
|
62 |
+
# Create visualization
|
63 |
+
vis_img = image.copy()
|
64 |
+
contours = measure.find_contours(markers, 0.5)
|
65 |
+
|
66 |
+
# Draw contours and cell IDs
|
67 |
+
for contour in contours:
|
68 |
+
coords = contour.astype(int)
|
69 |
+
cv2.drawContours(vis_img, [coords], -1, (0,255,0), 1)
|
70 |
+
|
71 |
+
for region in measure.regionprops(markers):
|
72 |
+
if region.area >= 50:
|
73 |
+
y, x = region.centroid
|
74 |
+
cv2.putText(vis_img, str(region.label),
|
75 |
+
(int(x), int(y)),
|
76 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
77 |
+
0.4, (255,0,0), 1)
|
78 |
+
|
79 |
+
# Create summary plots
|
80 |
+
fig, axes = plt.subplots(1, 2, figsize=(12, 6))
|
81 |
+
|
82 |
+
# Cell size distribution
|
83 |
+
df = pd.DataFrame(features)
|
84 |
+
df['area'].hist(ax=axes[0], bins=20)
|
85 |
+
axes[0].set_title('Cell Size Distribution')
|
86 |
+
axes[0].set_xlabel('Area')
|
87 |
+
axes[0].set_ylabel('Count')
|
88 |
+
|
89 |
+
# Circularity vs Intensity
|
90 |
+
axes[1].scatter(df['circularity'], df['mean_intensity'])
|
91 |
+
axes[1].set_title('Circularity vs Intensity')
|
92 |
+
axes[1].set_xlabel('Circularity')
|
93 |
+
axes[1].set_ylabel('Mean Intensity')
|
94 |
+
|
95 |
+
plt.tight_layout()
|
96 |
+
|
97 |
+
return (
|
98 |
+
cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB),
|
99 |
+
fig,
|
100 |
+
df
|
101 |
+
)
|
102 |
+
|
103 |
+
# Create Gradio interface
|
104 |
+
with gr.Blocks(title="Cell Analysis Tool") as demo:
|
105 |
+
gr.Markdown("""
|
106 |
+
# 🔬 Bioengineering Cell Analysis Tool
|
107 |
+
|
108 |
+
Upload microscopy images to analyze cell properties:
|
109 |
+
- Automated cell detection
|
110 |
+
- Feature extraction (size, shape, intensity)
|
111 |
+
- Statistical analysis
|
112 |
+
|
113 |
+
**Instructions:**
|
114 |
+
1. Upload an image containing cells
|
115 |
+
2. Wait for analysis to complete
|
116 |
+
3. Review results in three tabs:
|
117 |
+
- Detected cells visualization
|
118 |
+
- Statistical plots
|
119 |
+
- Detailed measurements table
|
120 |
+
""")
|
121 |
+
|
122 |
+
with gr.Row():
|
123 |
+
with gr.Column():
|
124 |
+
input_image = gr.Image(
|
125 |
+
label="Upload Image",
|
126 |
+
type="numpy",
|
127 |
+
tool="upload"
|
128 |
+
)
|
129 |
+
analyze_btn = gr.Button(
|
130 |
+
"Analyze Image",
|
131 |
+
variant="primary"
|
132 |
+
)
|
133 |
+
|
134 |
+
with gr.Column():
|
135 |
+
with gr.Tabs():
|
136 |
+
with gr.Tab("Detection Results"):
|
137 |
+
output_image = gr.Image(
|
138 |
+
label="Detected Cells"
|
139 |
+
)
|
140 |
+
with gr.Tab("Statistics"):
|
141 |
+
output_plot = gr.Plot(
|
142 |
+
label="Statistical Analysis"
|
143 |
+
)
|
144 |
+
with gr.Tab("Measurements"):
|
145 |
+
output_table = gr.DataFrame(
|
146 |
+
label="Cell Features"
|
147 |
+
)
|
148 |
+
|
149 |
+
analyze_btn.click(
|
150 |
+
fn=process_image,
|
151 |
+
inputs=input_image,
|
152 |
+
outputs=[output_image, output_plot, output_table]
|
153 |
+
)
|
154 |
+
|
155 |
+
# Launch the demo
|
156 |
+
if __name__ == "__main__":
|
157 |
+
demo.launch()
|