Update app.py
Browse files
app.py
CHANGED
@@ -5,102 +5,118 @@ import gradio as gr
|
|
5 |
from skimage import measure, morphology
|
6 |
from skimage.segmentation import watershed
|
7 |
import matplotlib.pyplot as plt
|
8 |
-
import base64
|
9 |
from datetime import datetime
|
|
|
10 |
|
11 |
def apply_color_transformation(image, transform_type):
|
12 |
"""Apply different color transformations to the image"""
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
return clahe.apply(gray)
|
30 |
-
return image
|
31 |
-
except Exception as e:
|
32 |
-
print(f"Transformation error: {str(e)}")
|
33 |
-
return None
|
34 |
|
35 |
def process_image(image, transform_type):
|
36 |
"""Process uploaded image and extract cell features"""
|
|
|
|
|
|
|
37 |
try:
|
38 |
-
if image is None:
|
39 |
-
return [None]*4
|
40 |
-
|
41 |
# Store original image for color transformations
|
42 |
original_image = image.copy()
|
43 |
|
44 |
-
# Convert to BGR
|
45 |
if len(image.shape) == 3:
|
46 |
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
47 |
|
48 |
-
#
|
49 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
50 |
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
|
51 |
enhanced = clahe.apply(gray)
|
52 |
blurred = cv2.medianBlur(enhanced, 5)
|
53 |
|
54 |
# Thresholding
|
55 |
-
_,
|
56 |
|
57 |
-
# Noise removal
|
58 |
kernel = np.ones((3,3), np.uint8)
|
59 |
-
opening = cv2.morphologyEx(
|
60 |
|
61 |
# Sure background area
|
62 |
sure_bg = cv2.dilate(opening, kernel, iterations=3)
|
63 |
|
64 |
# Finding sure foreground area
|
65 |
dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
|
66 |
-
_, sure_fg = cv2.threshold(dist_transform, 0.
|
67 |
-
sure_fg = np.uint8
|
68 |
|
69 |
-
#
|
70 |
unknown = cv2.subtract(sure_bg, sure_fg)
|
71 |
|
72 |
# Marker labelling
|
73 |
_, markers = cv2.connectedComponents(sure_fg)
|
74 |
-
markers
|
75 |
markers[unknown == 255] = 0
|
76 |
|
77 |
-
#
|
78 |
markers = cv2.watershed(image, markers)
|
79 |
|
80 |
-
#
|
81 |
features = []
|
82 |
-
vis_img = image.copy()
|
83 |
-
|
84 |
for region in measure.regionprops(markers):
|
85 |
-
if region.area >= 50:
|
86 |
-
y, x = region.centroid
|
87 |
-
# Store features
|
88 |
features.append({
|
89 |
'label': region.label,
|
90 |
'area': region.area,
|
|
|
91 |
'circularity': (4 * np.pi * region.area) / (region.perimeter ** 2) if region.perimeter > 0 else 0,
|
92 |
-
'mean_intensity': region.mean_intensity
|
|
|
|
|
93 |
})
|
94 |
-
# Draw text with contrast
|
95 |
-
cv2.putText(vis_img, str(region.label), (int(x), int(y)),
|
96 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 2)
|
97 |
-
cv2.putText(vis_img, str(region.label), (int(x), int(y)),
|
98 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,255), 1)
|
99 |
|
100 |
-
#
|
101 |
-
|
|
|
102 |
|
103 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
plt.style.use('seaborn')
|
105 |
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
|
106 |
fig.suptitle('Cell Analysis Results', fontsize=16, y=0.95)
|
@@ -110,16 +126,24 @@ def process_image(image, transform_type):
|
|
110 |
# Distribution plots
|
111 |
df['area'].hist(ax=axes[0,0], bins=20, color='skyblue', edgecolor='black')
|
112 |
axes[0,0].set_title('Cell Size Distribution')
|
|
|
|
|
113 |
|
114 |
df['circularity'].hist(ax=axes[0,1], bins=20, color='lightgreen', edgecolor='black')
|
115 |
axes[0,1].set_title('Circularity Distribution')
|
|
|
|
|
116 |
|
117 |
-
# Scatter
|
118 |
-
axes[1,0].scatter(df['circularity'], df['mean_intensity'],
|
|
|
119 |
axes[1,0].set_title('Circularity vs Intensity')
|
|
|
|
|
120 |
|
121 |
# Box plot
|
122 |
df.boxplot(column=['area', 'circularity'], ax=axes[1,1])
|
|
|
123 |
else:
|
124 |
for ax in axes.flat:
|
125 |
ax.text(0.5, 0.5, 'No cells detected', ha='center', va='center')
|
@@ -127,23 +151,20 @@ def process_image(image, transform_type):
|
|
127 |
plt.tight_layout()
|
128 |
|
129 |
# Apply color transformation
|
130 |
-
|
131 |
-
if transformed_img is not None and len(transformed_img.shape) == 2:
|
132 |
-
transformed_img = cv2.cvtColor(transformed_img, cv2.COLOR_GRAY2RGB)
|
133 |
|
134 |
return (
|
135 |
-
vis_img,
|
136 |
-
|
137 |
fig,
|
138 |
df
|
139 |
)
|
140 |
-
|
141 |
except Exception as e:
|
142 |
-
print(f"
|
143 |
-
return
|
144 |
-
|
145 |
|
146 |
-
# Create
|
147 |
with gr.Blocks(title="Advanced Cell Analysis Tool", theme=gr.themes.Soft()) as demo:
|
148 |
gr.Markdown("""
|
149 |
# 🔬 Advanced Bioengineering Cell Analysis Tool
|
@@ -157,7 +178,6 @@ with gr.Blocks(title="Advanced Cell Analysis Tool", theme=gr.themes.Soft()) as d
|
|
157 |
## Author
|
158 |
- **Muhammad Ibrahim Qasmi**
|
159 |
- [LinkedIn](https://www.linkedin.com/in/muhammad-ibrahim-qasmi-9876a1297/)
|
160 |
-
- [GitHub](https://github.com/yourusername) <!-- Add your GitHub URL -->
|
161 |
""")
|
162 |
|
163 |
with gr.Row():
|
@@ -201,21 +221,6 @@ with gr.Blocks(title="Advanced Cell Analysis Tool", theme=gr.themes.Soft()) as d
|
|
201 |
output_table = gr.DataFrame(
|
202 |
label="Cell Features"
|
203 |
)
|
204 |
-
download_btn = gr.Button(
|
205 |
-
"Download Results",
|
206 |
-
variant="secondary"
|
207 |
-
)
|
208 |
-
|
209 |
-
# Add footer
|
210 |
-
gr.Markdown("""
|
211 |
-
---
|
212 |
-
### 📝 Notes
|
213 |
-
- Supported image formats: PNG, JPG, JPEG
|
214 |
-
- Minimum recommended resolution: 512x512 pixels
|
215 |
-
- Processing time varies with image size and cell count
|
216 |
-
|
217 |
-
*Last updated: January 2025*
|
218 |
-
""")
|
219 |
|
220 |
analyze_btn.click(
|
221 |
fn=process_image,
|
@@ -225,7 +230,4 @@ with gr.Blocks(title="Advanced Cell Analysis Tool", theme=gr.themes.Soft()) as d
|
|
225 |
|
226 |
# Launch the demo
|
227 |
if __name__ == "__main__":
|
228 |
-
|
229 |
-
demo.launch()
|
230 |
-
except Exception as e:
|
231 |
-
print(f"Error launching Gradio interface: {e}")
|
|
|
5 |
from skimage import measure, morphology
|
6 |
from skimage.segmentation import watershed
|
7 |
import matplotlib.pyplot as plt
|
|
|
8 |
from datetime import datetime
|
9 |
+
import logging
|
10 |
|
11 |
def apply_color_transformation(image, transform_type):
|
12 |
"""Apply different color transformations to the image"""
|
13 |
+
if len(image.shape) == 3:
|
14 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
15 |
+
|
16 |
+
if transform_type == "Original":
|
17 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
18 |
+
elif transform_type == "Grayscale":
|
19 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
20 |
+
elif transform_type == "Binary":
|
21 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
22 |
+
_, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
|
23 |
+
return binary
|
24 |
+
elif transform_type == "CLAHE":
|
25 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
26 |
+
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
|
27 |
+
return clahe.apply(gray)
|
28 |
+
return image
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def process_image(image, transform_type):
|
31 |
"""Process uploaded image and extract cell features"""
|
32 |
+
if image is None:
|
33 |
+
return None, None, None, None
|
34 |
+
|
35 |
try:
|
|
|
|
|
|
|
36 |
# Store original image for color transformations
|
37 |
original_image = image.copy()
|
38 |
|
39 |
+
# Convert to BGR if needed
|
40 |
if len(image.shape) == 3:
|
41 |
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
42 |
|
43 |
+
# Basic preprocessing
|
44 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
45 |
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
|
46 |
enhanced = clahe.apply(gray)
|
47 |
blurred = cv2.medianBlur(enhanced, 5)
|
48 |
|
49 |
# Thresholding
|
50 |
+
_, binary = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
51 |
|
52 |
+
# Noise removal and cell separation
|
53 |
kernel = np.ones((3,3), np.uint8)
|
54 |
+
opening = cv2.morphologyEx(binary, cv2.MORPH_OPEN, kernel, iterations=2)
|
55 |
|
56 |
# Sure background area
|
57 |
sure_bg = cv2.dilate(opening, kernel, iterations=3)
|
58 |
|
59 |
# Finding sure foreground area
|
60 |
dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
|
61 |
+
_, sure_fg = cv2.threshold(dist_transform, 0.5 * dist_transform.max(), 255, 0)
|
62 |
+
sure_fg = sure_fg.astype(np.uint8)
|
63 |
|
64 |
+
# Finding unknown region
|
65 |
unknown = cv2.subtract(sure_bg, sure_fg)
|
66 |
|
67 |
# Marker labelling
|
68 |
_, markers = cv2.connectedComponents(sure_fg)
|
69 |
+
markers = markers + 1
|
70 |
markers[unknown == 255] = 0
|
71 |
|
72 |
+
# Apply watershed
|
73 |
markers = cv2.watershed(image, markers)
|
74 |
|
75 |
+
# Extract features
|
76 |
features = []
|
|
|
|
|
77 |
for region in measure.regionprops(markers):
|
78 |
+
if region.area >= 50: # Filter small regions
|
|
|
|
|
79 |
features.append({
|
80 |
'label': region.label,
|
81 |
'area': region.area,
|
82 |
+
'perimeter': region.perimeter,
|
83 |
'circularity': (4 * np.pi * region.area) / (region.perimeter ** 2) if region.perimeter > 0 else 0,
|
84 |
+
'mean_intensity': region.mean_intensity,
|
85 |
+
'centroid_x': region.centroid[1],
|
86 |
+
'centroid_y': region.centroid[0]
|
87 |
})
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
# Create visualization
|
90 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
91 |
+
vis_img = image.copy()
|
92 |
|
93 |
+
# Draw contours
|
94 |
+
contours = measure.find_contours(markers, 0.5)
|
95 |
+
for contour in contours:
|
96 |
+
coords = np.array(contour).astype(int)
|
97 |
+
coords = coords[:, [1, 0]] # Swap x and y coordinates
|
98 |
+
coords = coords.reshape((-1, 1, 2))
|
99 |
+
cv2.polylines(vis_img, [coords], True, (0, 255, 0), 2)
|
100 |
+
|
101 |
+
# Add cell labels and measurements
|
102 |
+
for feature in features:
|
103 |
+
x = int(feature['centroid_x'])
|
104 |
+
y = int(feature['centroid_y'])
|
105 |
+
# White outline
|
106 |
+
cv2.putText(vis_img, str(feature['label']),
|
107 |
+
(x, y), cv2.FONT_HERSHEY_SIMPLEX,
|
108 |
+
0.5, (255,255,255), 2)
|
109 |
+
# Red text
|
110 |
+
cv2.putText(vis_img, str(feature['label']),
|
111 |
+
(x, y), cv2.FONT_HERSHEY_SIMPLEX,
|
112 |
+
0.5, (0,0,255), 1)
|
113 |
+
|
114 |
+
# Add timestamp
|
115 |
+
cv2.putText(vis_img, f"Analyzed: {timestamp}",
|
116 |
+
(10, 30), cv2.FONT_HERSHEY_SIMPLEX,
|
117 |
+
0.7, (255,255,255), 2)
|
118 |
+
|
119 |
+
# Create plots
|
120 |
plt.style.use('seaborn')
|
121 |
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
|
122 |
fig.suptitle('Cell Analysis Results', fontsize=16, y=0.95)
|
|
|
126 |
# Distribution plots
|
127 |
df['area'].hist(ax=axes[0,0], bins=20, color='skyblue', edgecolor='black')
|
128 |
axes[0,0].set_title('Cell Size Distribution')
|
129 |
+
axes[0,0].set_xlabel('Area')
|
130 |
+
axes[0,0].set_ylabel('Count')
|
131 |
|
132 |
df['circularity'].hist(ax=axes[0,1], bins=20, color='lightgreen', edgecolor='black')
|
133 |
axes[0,1].set_title('Circularity Distribution')
|
134 |
+
axes[0,1].set_xlabel('Circularity')
|
135 |
+
axes[0,1].set_ylabel('Count')
|
136 |
|
137 |
+
# Scatter plots
|
138 |
+
axes[1,0].scatter(df['circularity'], df['mean_intensity'],
|
139 |
+
alpha=0.6, c='purple')
|
140 |
axes[1,0].set_title('Circularity vs Intensity')
|
141 |
+
axes[1,0].set_xlabel('Circularity')
|
142 |
+
axes[1,0].set_ylabel('Mean Intensity')
|
143 |
|
144 |
# Box plot
|
145 |
df.boxplot(column=['area', 'circularity'], ax=axes[1,1])
|
146 |
+
axes[1,1].set_title('Feature Distributions')
|
147 |
else:
|
148 |
for ax in axes.flat:
|
149 |
ax.text(0.5, 0.5, 'No cells detected', ha='center', va='center')
|
|
|
151 |
plt.tight_layout()
|
152 |
|
153 |
# Apply color transformation
|
154 |
+
transformed_image = apply_color_transformation(original_image, transform_type)
|
|
|
|
|
155 |
|
156 |
return (
|
157 |
+
cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB),
|
158 |
+
transformed_image,
|
159 |
fig,
|
160 |
df
|
161 |
)
|
162 |
+
|
163 |
except Exception as e:
|
164 |
+
print(f"Error processing image: {str(e)}")
|
165 |
+
return None, None, None, None
|
|
|
166 |
|
167 |
+
# Create Gradio interface
|
168 |
with gr.Blocks(title="Advanced Cell Analysis Tool", theme=gr.themes.Soft()) as demo:
|
169 |
gr.Markdown("""
|
170 |
# 🔬 Advanced Bioengineering Cell Analysis Tool
|
|
|
178 |
## Author
|
179 |
- **Muhammad Ibrahim Qasmi**
|
180 |
- [LinkedIn](https://www.linkedin.com/in/muhammad-ibrahim-qasmi-9876a1297/)
|
|
|
181 |
""")
|
182 |
|
183 |
with gr.Row():
|
|
|
221 |
output_table = gr.DataFrame(
|
222 |
label="Cell Features"
|
223 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
analyze_btn.click(
|
226 |
fn=process_image,
|
|
|
230 |
|
231 |
# Launch the demo
|
232 |
if __name__ == "__main__":
|
233 |
+
demo.launch()
|
|
|
|
|
|