Update app.py
Browse files
app.py
CHANGED
|
@@ -2,12 +2,11 @@ import cv2
|
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
import gradio as gr
|
| 5 |
-
from skimage import measure, morphology
|
| 6 |
import matplotlib.pyplot as plt
|
| 7 |
from datetime import datetime
|
| 8 |
|
| 9 |
def detect_blood_cells(image):
|
| 10 |
-
"""
|
| 11 |
# Convert to RGB if grayscale
|
| 12 |
if len(image.shape) == 2:
|
| 13 |
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
|
|
@@ -15,45 +14,48 @@ def detect_blood_cells(image):
|
|
| 15 |
# Convert to HSV color space
|
| 16 |
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
|
| 17 |
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
-
lower_red1 = np.array([0, 70, 50])
|
| 21 |
upper_red1 = np.array([10, 255, 255])
|
| 22 |
-
lower_red2 = np.array([
|
| 23 |
upper_red2 = np.array([180, 255, 255])
|
| 24 |
|
|
|
|
| 25 |
mask1 = cv2.inRange(hsv, lower_red1, upper_red1)
|
| 26 |
mask2 = cv2.inRange(hsv, lower_red2, upper_red2)
|
| 27 |
mask = mask1 + mask2
|
| 28 |
-
|
| 29 |
-
#
|
| 30 |
-
kernel =
|
| 31 |
-
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=
|
| 32 |
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=2)
|
| 33 |
|
| 34 |
-
#
|
| 35 |
-
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
| 57 |
|
| 58 |
def process_image(image, transform_type):
|
| 59 |
"""Process uploaded image and extract blood cell features"""
|
|
@@ -61,64 +63,68 @@ def process_image(image, transform_type):
|
|
| 61 |
return None, None, None, None
|
| 62 |
|
| 63 |
try:
|
| 64 |
-
# Store original image
|
| 65 |
original_image = image.copy()
|
| 66 |
|
| 67 |
# Detect blood cells
|
| 68 |
-
contours,
|
| 69 |
|
| 70 |
# Extract features
|
| 71 |
features = []
|
| 72 |
for i, contour in enumerate(contours, 1):
|
| 73 |
area = cv2.contourArea(contour)
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
'area': area,
|
| 89 |
-
'perimeter': perimeter,
|
| 90 |
-
'circularity': circularity,
|
| 91 |
-
'centroid_x': cx,
|
| 92 |
-
'centroid_y': cy
|
| 93 |
-
})
|
| 94 |
|
| 95 |
# Create visualization
|
| 96 |
vis_img = image.copy()
|
| 97 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 98 |
|
| 99 |
-
# Draw contours and labels
|
| 100 |
for feature in features:
|
| 101 |
-
|
| 102 |
-
cv2.drawContours(vis_img,
|
| 103 |
|
| 104 |
# Add cell labels
|
| 105 |
x = feature['centroid_x']
|
| 106 |
y = feature['centroid_y']
|
| 107 |
# White outline
|
| 108 |
cv2.putText(vis_img, str(feature['label']),
|
| 109 |
-
(x, y), cv2.FONT_HERSHEY_SIMPLEX,
|
| 110 |
-
0.
|
| 111 |
# Red text
|
| 112 |
cv2.putText(vis_img, str(feature['label']),
|
| 113 |
-
(x, y), cv2.FONT_HERSHEY_SIMPLEX,
|
| 114 |
-
0.
|
| 115 |
|
| 116 |
-
# Add timestamp and cell count
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
|
|
|
| 120 |
|
| 121 |
-
# Create analysis plots
|
| 122 |
plt.style.use('default')
|
| 123 |
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
|
| 124 |
fig.suptitle('Blood Cell Analysis Results', fontsize=16, y=0.95)
|
|
@@ -139,11 +145,14 @@ def process_image(image, transform_type):
|
|
| 139 |
axes[0,1].grid(True, alpha=0.3)
|
| 140 |
|
| 141 |
# Scatter plot
|
| 142 |
-
axes[1,0].scatter(df['area'], df['
|
| 143 |
-
|
|
|
|
|
|
|
| 144 |
axes[1,0].set_xlabel('Area')
|
| 145 |
-
axes[1,0].set_ylabel('
|
| 146 |
axes[1,0].grid(True, alpha=0.3)
|
|
|
|
| 147 |
|
| 148 |
# Box plot
|
| 149 |
df.boxplot(column=['area', 'circularity'], ax=axes[1,1])
|
|
@@ -168,7 +177,7 @@ def process_image(image, transform_type):
|
|
| 168 |
except Exception as e:
|
| 169 |
print(f"Error processing image: {str(e)}")
|
| 170 |
import traceback
|
| 171 |
-
traceback.print_exc()
|
| 172 |
return None, None, None, None
|
| 173 |
|
| 174 |
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
import gradio as gr
|
|
|
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
from datetime import datetime
|
| 7 |
|
| 8 |
def detect_blood_cells(image):
|
| 9 |
+
"""Optimized function for blood cell detection"""
|
| 10 |
# Convert to RGB if grayscale
|
| 11 |
if len(image.shape) == 2:
|
| 12 |
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
|
|
|
|
| 14 |
# Convert to HSV color space
|
| 15 |
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
|
| 16 |
|
| 17 |
+
# Optimized red color ranges for blood cells
|
| 18 |
+
lower_red1 = np.array([0, 100, 100]) # Increased saturation threshold
|
|
|
|
| 19 |
upper_red1 = np.array([10, 255, 255])
|
| 20 |
+
lower_red2 = np.array([160, 100, 100]) # Increased saturation threshold
|
| 21 |
upper_red2 = np.array([180, 255, 255])
|
| 22 |
|
| 23 |
+
# Create masks for red color
|
| 24 |
mask1 = cv2.inRange(hsv, lower_red1, upper_red1)
|
| 25 |
mask2 = cv2.inRange(hsv, lower_red2, upper_red2)
|
| 26 |
mask = mask1 + mask2
|
| 27 |
+
|
| 28 |
+
# Enhanced noise removal
|
| 29 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3))
|
| 30 |
+
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=1)
|
| 31 |
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=2)
|
| 32 |
|
| 33 |
+
# Apply distance transform to separate touching cells
|
| 34 |
+
dist_transform = cv2.distanceTransform(mask, cv2.DIST_L2, 5)
|
| 35 |
+
_, sure_fg = cv2.threshold(dist_transform, 0.5 * dist_transform.max(), 255, 0)
|
| 36 |
+
sure_fg = np.uint8(sure_fg)
|
| 37 |
|
| 38 |
+
# Find connected components
|
| 39 |
+
_, markers = cv2.connectedComponents(sure_fg)
|
| 40 |
+
|
| 41 |
+
# Find contours with hierarchy to handle nested contours
|
| 42 |
+
contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
| 43 |
|
| 44 |
+
# Filter contours based on area and circularity
|
| 45 |
+
filtered_contours = []
|
| 46 |
+
for contour in contours:
|
| 47 |
+
area = cv2.contourArea(contour)
|
| 48 |
+
perimeter = cv2.arcLength(contour, True)
|
| 49 |
+
if perimeter == 0:
|
| 50 |
+
continue
|
| 51 |
+
|
| 52 |
+
circularity = 4 * np.pi * area / (perimeter * perimeter)
|
| 53 |
+
|
| 54 |
+
# Optimized thresholds for your specific images
|
| 55 |
+
if 500 < area < 2500 and circularity > 0.8: # Adjusted thresholds
|
| 56 |
+
filtered_contours.append(contour)
|
| 57 |
+
|
| 58 |
+
return filtered_contours, markers
|
| 59 |
|
| 60 |
def process_image(image, transform_type):
|
| 61 |
"""Process uploaded image and extract blood cell features"""
|
|
|
|
| 63 |
return None, None, None, None
|
| 64 |
|
| 65 |
try:
|
| 66 |
+
# Store original image
|
| 67 |
original_image = image.copy()
|
| 68 |
|
| 69 |
# Detect blood cells
|
| 70 |
+
contours, markers = detect_blood_cells(image)
|
| 71 |
|
| 72 |
# Extract features
|
| 73 |
features = []
|
| 74 |
for i, contour in enumerate(contours, 1):
|
| 75 |
area = cv2.contourArea(contour)
|
| 76 |
+
perimeter = cv2.arcLength(contour, True)
|
| 77 |
+
circularity = 4 * np.pi * area / (perimeter * perimeter)
|
| 78 |
+
|
| 79 |
+
# Calculate centroid
|
| 80 |
+
M = cv2.moments(contour)
|
| 81 |
+
if M["m00"] != 0:
|
| 82 |
+
cx = int(M["m10"] / M["m00"])
|
| 83 |
+
cy = int(M["m01"] / M["m00"])
|
| 84 |
+
|
| 85 |
+
# Extract mean color intensity
|
| 86 |
+
mask = np.zeros(image.shape[:2], dtype=np.uint8)
|
| 87 |
+
cv2.drawContours(mask, [contour], -1, 255, -1)
|
| 88 |
+
mean_intensity = cv2.mean(cv2.cvtColor(image, cv2.COLOR_RGB2GRAY), mask=mask)[0]
|
| 89 |
|
| 90 |
+
features.append({
|
| 91 |
+
'label': i,
|
| 92 |
+
'area': area,
|
| 93 |
+
'perimeter': perimeter,
|
| 94 |
+
'circularity': circularity,
|
| 95 |
+
'mean_intensity': mean_intensity,
|
| 96 |
+
'centroid_x': cx,
|
| 97 |
+
'centroid_y': cy
|
| 98 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
# Create visualization
|
| 101 |
vis_img = image.copy()
|
| 102 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 103 |
|
| 104 |
+
# Draw contours and labels with enhanced visibility
|
| 105 |
for feature in features:
|
| 106 |
+
i = feature['label'] - 1
|
| 107 |
+
cv2.drawContours(vis_img, contours, i, (0, 255, 0), 2)
|
| 108 |
|
| 109 |
# Add cell labels
|
| 110 |
x = feature['centroid_x']
|
| 111 |
y = feature['centroid_y']
|
| 112 |
# White outline
|
| 113 |
cv2.putText(vis_img, str(feature['label']),
|
| 114 |
+
(x-10, y), cv2.FONT_HERSHEY_SIMPLEX,
|
| 115 |
+
0.4, (255, 255, 255), 2)
|
| 116 |
# Red text
|
| 117 |
cv2.putText(vis_img, str(feature['label']),
|
| 118 |
+
(x-10, y), cv2.FONT_HERSHEY_SIMPLEX,
|
| 119 |
+
0.4, (0, 0, 255), 1)
|
| 120 |
|
| 121 |
+
# Add timestamp and cell count with better positioning
|
| 122 |
+
info_text = f"Analyzed: {timestamp} | Cells Detected: {len(features)}"
|
| 123 |
+
cv2.putText(vis_img, info_text,
|
| 124 |
+
(10, 25), cv2.FONT_HERSHEY_SIMPLEX,
|
| 125 |
+
0.6, (255, 255, 255), 2)
|
| 126 |
|
| 127 |
+
# Create analysis plots
|
| 128 |
plt.style.use('default')
|
| 129 |
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
|
| 130 |
fig.suptitle('Blood Cell Analysis Results', fontsize=16, y=0.95)
|
|
|
|
| 145 |
axes[0,1].grid(True, alpha=0.3)
|
| 146 |
|
| 147 |
# Scatter plot
|
| 148 |
+
scatter = axes[1,0].scatter(df['area'], df['mean_intensity'],
|
| 149 |
+
c=df['circularity'], cmap='viridis',
|
| 150 |
+
alpha=0.6)
|
| 151 |
+
axes[1,0].set_title('Area vs Intensity')
|
| 152 |
axes[1,0].set_xlabel('Area')
|
| 153 |
+
axes[1,0].set_ylabel('Mean Intensity')
|
| 154 |
axes[1,0].grid(True, alpha=0.3)
|
| 155 |
+
plt.colorbar(scatter, ax=axes[1,0], label='Circularity')
|
| 156 |
|
| 157 |
# Box plot
|
| 158 |
df.boxplot(column=['area', 'circularity'], ax=axes[1,1])
|
|
|
|
| 177 |
except Exception as e:
|
| 178 |
print(f"Error processing image: {str(e)}")
|
| 179 |
import traceback
|
| 180 |
+
traceback.print_exc()
|
| 181 |
return None, None, None, None
|
| 182 |
|
| 183 |
|