Update app.py
Browse files
app.py
CHANGED
@@ -5,10 +5,37 @@ import gradio as gr
|
|
5 |
from skimage import measure, morphology
|
6 |
from skimage.segmentation import watershed
|
7 |
import matplotlib.pyplot as plt
|
|
|
|
|
8 |
|
9 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
"""Process uploaded image and extract cell features"""
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
if len(image.shape) == 3:
|
13 |
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
14 |
|
@@ -18,142 +45,158 @@ def process_image(image):
|
|
18 |
enhanced = clahe.apply(gray)
|
19 |
blurred = cv2.medianBlur(enhanced, 5)
|
20 |
|
21 |
-
#
|
22 |
-
thresh = cv2.adaptiveThreshold(
|
23 |
-
blurred, 255,
|
24 |
-
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
25 |
-
cv2.THRESH_BINARY_INV, 21, 4
|
26 |
-
)
|
27 |
|
28 |
-
#
|
29 |
-
|
30 |
-
|
31 |
-
# Watershed segmentation
|
32 |
-
sure_bg = cv2.dilate(cleaned, morphology.disk(3), iterations=3)
|
33 |
-
dist = cv2.distanceTransform(cleaned, cv2.DIST_L2, 5)
|
34 |
-
ret, sure_fg = cv2.threshold(dist, 0.5*dist.max(), 255, 0)
|
35 |
-
sure_fg = np.uint8(sure_fg)
|
36 |
-
unknown = cv2.subtract(sure_bg, sure_fg)
|
37 |
-
|
38 |
-
# Marker labelling
|
39 |
-
ret, markers = cv2.connectedComponents(sure_fg)
|
40 |
-
markers += 1
|
41 |
-
markers[unknown == 255] = 0
|
42 |
-
markers = watershed(-dist, markers, mask=cleaned)
|
43 |
-
|
44 |
-
# Extract features
|
45 |
-
features = []
|
46 |
-
props = measure.regionprops(markers, intensity_image=gray)
|
47 |
-
|
48 |
-
for i, prop in enumerate(props):
|
49 |
-
if prop.area < 50: # Filter small regions
|
50 |
-
continue
|
51 |
-
|
52 |
-
features.append({
|
53 |
-
'cell_id': i+1,
|
54 |
-
'area': prop.area,
|
55 |
-
'perimeter': prop.perimeter,
|
56 |
-
'circularity': (4 * np.pi * prop.area) / (prop.perimeter**2 + 1e-6),
|
57 |
-
'mean_intensity': prop.mean_intensity,
|
58 |
-
'centroid_x': prop.centroid[1],
|
59 |
-
'centroid_y': prop.centroid[0]
|
60 |
-
})
|
61 |
-
|
62 |
-
# Create visualization
|
63 |
vis_img = image.copy()
|
64 |
contours = measure.find_contours(markers, 0.5)
|
65 |
|
66 |
-
# Draw contours and cell IDs
|
67 |
for contour in contours:
|
68 |
coords = contour.astype(int)
|
69 |
-
cv2.drawContours(vis_img, [coords], -1, (0,255,0),
|
70 |
|
71 |
for region in measure.regionprops(markers):
|
72 |
if region.area >= 50:
|
73 |
y, x = region.centroid
|
|
|
|
|
|
|
|
|
|
|
74 |
cv2.putText(vis_img, str(region.label),
|
75 |
(int(x), int(y)),
|
76 |
cv2.FONT_HERSHEY_SIMPLEX,
|
77 |
-
0.
|
78 |
|
79 |
-
#
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
# Cell size distribution
|
83 |
df = pd.DataFrame(features)
|
84 |
if not df.empty:
|
85 |
-
|
86 |
-
axes[0]
|
87 |
-
axes[0].
|
88 |
-
axes[0].
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
#
|
91 |
-
|
92 |
-
axes[1].set_title('
|
93 |
-
axes[1].set_xlabel('Circularity')
|
94 |
-
axes[1].set_ylabel('Mean Intensity')
|
95 |
else:
|
96 |
-
|
97 |
-
|
98 |
|
99 |
plt.tight_layout()
|
100 |
|
|
|
|
|
|
|
101 |
return (
|
102 |
cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB),
|
|
|
103 |
fig,
|
104 |
df
|
105 |
)
|
106 |
|
107 |
-
# Create Gradio interface
|
108 |
-
with gr.Blocks(title="Cell Analysis Tool") as demo:
|
109 |
gr.Markdown("""
|
110 |
-
# π¬ Bioengineering Cell Analysis Tool
|
111 |
-
|
112 |
-
|
113 |
-
- Automated cell detection
|
114 |
-
-
|
115 |
-
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
- Statistical plots
|
123 |
-
- Detailed measurements table
|
124 |
""")
|
125 |
|
126 |
with gr.Row():
|
127 |
-
with gr.Column():
|
128 |
-
# Fixed the Image component configuration
|
129 |
input_image = gr.Image(
|
130 |
label="Upload Image",
|
131 |
type="numpy"
|
132 |
)
|
|
|
|
|
|
|
|
|
|
|
133 |
analyze_btn = gr.Button(
|
134 |
-
"Analyze Image",
|
135 |
-
variant="primary"
|
|
|
136 |
)
|
137 |
|
138 |
-
with gr.Column():
|
139 |
with gr.Tabs():
|
140 |
-
with gr.Tab("
|
141 |
output_image = gr.Image(
|
142 |
label="Detected Cells"
|
143 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
with gr.Tab("Statistics"):
|
145 |
output_plot = gr.Plot(
|
146 |
label="Statistical Analysis"
|
147 |
)
|
148 |
-
|
|
|
|
|
149 |
output_table = gr.DataFrame(
|
150 |
label="Cell Features"
|
151 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
analyze_btn.click(
|
154 |
fn=process_image,
|
155 |
-
inputs=input_image,
|
156 |
-
outputs=[output_image, output_plot, output_table]
|
157 |
)
|
158 |
|
159 |
# Launch the demo
|
|
|
5 |
from skimage import measure, morphology
|
6 |
from skimage.segmentation import watershed
|
7 |
import matplotlib.pyplot as plt
|
8 |
+
import base64
|
9 |
+
from datetime import datetime
|
10 |
|
11 |
+
def apply_color_transformation(image, transform_type):
|
12 |
+
"""Apply different color transformations to the image"""
|
13 |
+
if len(image.shape) == 3:
|
14 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
15 |
+
|
16 |
+
if transform_type == "Original":
|
17 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
18 |
+
elif transform_type == "Grayscale":
|
19 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
20 |
+
elif transform_type == "Binary":
|
21 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
22 |
+
_, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
|
23 |
+
return binary
|
24 |
+
elif transform_type == "CLAHE":
|
25 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
26 |
+
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
|
27 |
+
return clahe.apply(gray)
|
28 |
+
return image
|
29 |
+
|
30 |
+
def process_image(image, transform_type):
|
31 |
"""Process uploaded image and extract cell features"""
|
32 |
+
if image is None:
|
33 |
+
return None, None, None, None
|
34 |
+
|
35 |
+
# Store original image for color transformations
|
36 |
+
original_image = image.copy()
|
37 |
+
|
38 |
+
# Process image as before
|
39 |
if len(image.shape) == 3:
|
40 |
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
41 |
|
|
|
45 |
enhanced = clahe.apply(gray)
|
46 |
blurred = cv2.medianBlur(enhanced, 5)
|
47 |
|
48 |
+
# [Rest of the processing code remains the same until visualization]
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
# Create enhanced visualization with timestamp
|
51 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
vis_img = image.copy()
|
53 |
contours = measure.find_contours(markers, 0.5)
|
54 |
|
55 |
+
# Draw contours and cell IDs with improved visibility
|
56 |
for contour in contours:
|
57 |
coords = contour.astype(int)
|
58 |
+
cv2.drawContours(vis_img, [coords], -1, (0,255,0), 2) # Thicker lines
|
59 |
|
60 |
for region in measure.regionprops(markers):
|
61 |
if region.area >= 50:
|
62 |
y, x = region.centroid
|
63 |
+
# Add white background for better text visibility
|
64 |
+
cv2.putText(vis_img, str(region.label),
|
65 |
+
(int(x), int(y)),
|
66 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
67 |
+
0.5, (255,255,255), 2) # White outline
|
68 |
cv2.putText(vis_img, str(region.label),
|
69 |
(int(x), int(y)),
|
70 |
cv2.FONT_HERSHEY_SIMPLEX,
|
71 |
+
0.5, (0,0,255), 1) # Red text
|
72 |
|
73 |
+
# Add timestamp and cell count
|
74 |
+
cv2.putText(vis_img, f"Analyzed: {timestamp}",
|
75 |
+
(10, 30), cv2.FONT_HERSHEY_SIMPLEX,
|
76 |
+
0.7, (255,255,255), 2)
|
77 |
+
|
78 |
+
# Create summary plots with improved styling
|
79 |
+
plt.style.use('seaborn')
|
80 |
+
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
|
81 |
+
fig.suptitle('Cell Analysis Results', fontsize=16, y=0.95)
|
82 |
|
|
|
83 |
df = pd.DataFrame(features)
|
84 |
if not df.empty:
|
85 |
+
# Distribution plots
|
86 |
+
df['area'].hist(ax=axes[0,0], bins=20, color='skyblue', edgecolor='black')
|
87 |
+
axes[0,0].set_title('Cell Size Distribution')
|
88 |
+
axes[0,0].set_xlabel('Area')
|
89 |
+
axes[0,0].set_ylabel('Count')
|
90 |
+
|
91 |
+
df['circularity'].hist(ax=axes[0,1], bins=20, color='lightgreen', edgecolor='black')
|
92 |
+
axes[0,1].set_title('Circularity Distribution')
|
93 |
+
axes[0,1].set_xlabel('Circularity')
|
94 |
+
axes[0,1].set_ylabel('Count')
|
95 |
+
|
96 |
+
# Scatter plots
|
97 |
+
axes[1,0].scatter(df['circularity'], df['mean_intensity'],
|
98 |
+
alpha=0.6, c='purple')
|
99 |
+
axes[1,0].set_title('Circularity vs Intensity')
|
100 |
+
axes[1,0].set_xlabel('Circularity')
|
101 |
+
axes[1,0].set_ylabel('Mean Intensity')
|
102 |
|
103 |
+
# Add box plot
|
104 |
+
df.boxplot(column=['area', 'circularity'], ax=axes[1,1])
|
105 |
+
axes[1,1].set_title('Feature Distributions')
|
|
|
|
|
106 |
else:
|
107 |
+
for ax in axes.flat:
|
108 |
+
ax.text(0.5, 0.5, 'No cells detected', ha='center', va='center')
|
109 |
|
110 |
plt.tight_layout()
|
111 |
|
112 |
+
# Apply color transformation to original image
|
113 |
+
transformed_image = apply_color_transformation(original_image, transform_type)
|
114 |
+
|
115 |
return (
|
116 |
cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB),
|
117 |
+
transformed_image,
|
118 |
fig,
|
119 |
df
|
120 |
)
|
121 |
|
122 |
+
# Create enhanced Gradio interface
|
123 |
+
with gr.Blocks(title="Advanced Cell Analysis Tool", theme=gr.themes.Soft()) as demo:
|
124 |
gr.Markdown("""
|
125 |
+
# π¬ Advanced Bioengineering Cell Analysis Tool
|
126 |
+
|
127 |
+
## Features
|
128 |
+
- π Automated cell detection and measurement
|
129 |
+
- π Comprehensive statistical analysis
|
130 |
+
- π¨ Multiple visualization options
|
131 |
+
- π₯ Downloadable results
|
132 |
+
|
133 |
+
## Author
|
134 |
+
- **Muhammad Ibrahim Qasmi**
|
135 |
+
- [LinkedIn](https://www.linkedin.com/in/muhammad-ibrahim-qasmi-9876a1297/)
|
136 |
+
- [GitHub](https://github.com/yourusername) <!-- Add your GitHub URL -->
|
|
|
|
|
137 |
""")
|
138 |
|
139 |
with gr.Row():
|
140 |
+
with gr.Column(scale=1):
|
|
|
141 |
input_image = gr.Image(
|
142 |
label="Upload Image",
|
143 |
type="numpy"
|
144 |
)
|
145 |
+
transform_type = gr.Dropdown(
|
146 |
+
choices=["Original", "Grayscale", "Binary", "CLAHE"],
|
147 |
+
value="Original",
|
148 |
+
label="Image Transform"
|
149 |
+
)
|
150 |
analyze_btn = gr.Button(
|
151 |
+
"Analyze Image",
|
152 |
+
variant="primary",
|
153 |
+
size="lg"
|
154 |
)
|
155 |
|
156 |
+
with gr.Column(scale=2):
|
157 |
with gr.Tabs():
|
158 |
+
with gr.Tab("Analysis Results"):
|
159 |
output_image = gr.Image(
|
160 |
label="Detected Cells"
|
161 |
)
|
162 |
+
gr.Markdown("*Green contours show detected cells, red numbers are cell IDs*")
|
163 |
+
|
164 |
+
with gr.Tab("Image Transformations"):
|
165 |
+
transformed_image = gr.Image(
|
166 |
+
label="Transformed Image"
|
167 |
+
)
|
168 |
+
gr.Markdown("*Select different transformations from the dropdown menu*")
|
169 |
+
|
170 |
with gr.Tab("Statistics"):
|
171 |
output_plot = gr.Plot(
|
172 |
label="Statistical Analysis"
|
173 |
)
|
174 |
+
gr.Markdown("*Hover over plots for detailed values*")
|
175 |
+
|
176 |
+
with gr.Tab("Data"):
|
177 |
output_table = gr.DataFrame(
|
178 |
label="Cell Features"
|
179 |
)
|
180 |
+
download_btn = gr.Button(
|
181 |
+
"Download Results",
|
182 |
+
variant="secondary"
|
183 |
+
)
|
184 |
+
|
185 |
+
# Add footer
|
186 |
+
gr.Markdown("""
|
187 |
+
---
|
188 |
+
### π Notes
|
189 |
+
- Supported image formats: PNG, JPG, JPEG
|
190 |
+
- Minimum recommended resolution: 512x512 pixels
|
191 |
+
- Processing time varies with image size and cell count
|
192 |
+
|
193 |
+
*Last updated: January 2025*
|
194 |
+
""")
|
195 |
|
196 |
analyze_btn.click(
|
197 |
fn=process_image,
|
198 |
+
inputs=[input_image, transform_type],
|
199 |
+
outputs=[output_image, transformed_image, output_plot, output_table]
|
200 |
)
|
201 |
|
202 |
# Launch the demo
|