import gradio as gr import cv2 import numpy as np import pandas as pd from collections import Counter from ultralytics import YOLO from huggingface_hub import hf_hub_download # # Download YOLOv10 model from Hugging Face # MODEL_PATH = hf_hub_download( # repo_id="ibrahim313/Bioengineering_Query_Tool_image_based", # filename="best.pt" # ) # Load the model model = YOLO("best.pt") def process_image(image): """Detect cells in the image, extract attributes, and return results.""" # Convert image to RGB image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Perform detection results = model.predict(source=image_rgb, imgsz=640, conf=0.25) # Get annotated image annotated_img = results[0].plot() # Extract detection data detections = results[0].boxes.data if results[0].boxes is not None else [] if len(detections) > 0: class_names = [model.names[int(cls)] for cls in detections[:, 5]] count = Counter(class_names) detection_str = ', '.join([f"{name}: {count[name]}" for name in count]) # Extract cell attributes (position, size, etc.) df = pd.DataFrame(detections.numpy(), columns=["x_min", "y_min", "x_max", "y_max", "confidence", "class"]) df["class_name"] = df["class"].apply(lambda x: model.names[int(x)]) df["width"] = df["x_max"] - df["x_min"] df["height"] = df["y_max"] - df["y_min"] df["area"] = df["width"] * df["height"] summary = df.groupby("class_name")["area"].describe().reset_index() else: detection_str = "No detections" summary = pd.DataFrame(columns=["class_name", "count", "mean", "std", "min", "25%", "50%", "75%", "max"]) return annotated_img, detection_str, summary # Create Gradio interface app = gr.Interface( fn=process_image, inputs=gr.Image(type="numpy", label="Upload an Image"), outputs=[ gr.Image(type="numpy", label="Annotated Image"), gr.Textbox(label="Detection Counts"), gr.Dataframe(label="Cell Statistics") ], title="Bioengineering Image Analysis Tool", description="Upload an image to detect and analyze bioengineering cells using YOLOv10." ) app.launch()