from segment_anything import sam_model_registry, SamPredictor import torch import cv2 import numpy as np import gradio as gr import pandas as pd import matplotlib.pyplot as plt # Load SAM model sam_checkpoint = "sam_vit_h.pth" # Checkpoint file (download it from Meta AI) device = "cuda" if torch.cuda.is_available() else "cpu" model_type = "vit_h" sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device) predictor = SamPredictor(sam) def preprocess_image(image): """Convert image to RGB format for SAM.""" if len(image.shape) == 2: image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) return image def detect_blood_cells(image): """Detect blood cells using SAM.""" image = preprocess_image(image) predictor.set_image(image) # Generate automatic masks (SAM can also take prompts for guided segmentation) masks, _, _ = predictor.predict( point_coords=None, point_labels=None, multimask_output=True ) contours_list = [] features = [] for i, mask in enumerate(masks): mask = mask.astype(np.uint8) * 255 # Convert boolean mask to uint8 contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for j, contour in enumerate(contours, 1): area = cv2.contourArea(contour) perimeter = cv2.arcLength(contour, True) circularity = 4 * np.pi * area / (perimeter * perimeter) if perimeter > 0 else 0 if 100 < area < 5000 and circularity > 0.7: M = cv2.moments(contour) if M["m00"] != 0: cx = int(M["m10"] / M["m00"]) cy = int(M["m01"] / M["m00"]) features.append({ 'label': f"{i}-{j}", 'area': area, 'perimeter': perimeter, 'circularity': circularity, 'centroid_x': cx, 'centroid_y': cy }) contours_list.append(contour) return contours_list, features, masks def process_image(image): if image is None: return None, None, None, None contours, features, masks = detect_blood_cells(image) vis_img = image.copy() for feature in features: contour = contours[int(feature['label'].split('-')[1]) - 1] cv2.drawContours(vis_img, [contour], -1, (0, 255, 0), 2) cv2.putText(vis_img, str(feature['label']), (feature['centroid_x'], feature['centroid_y']), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1) df = pd.DataFrame(features) return vis_img, masks[0], df def analyze(image): vis_img, mask, df = process_image(image) plt.style.use('dark_background') fig, axes = plt.subplots(1, 2, figsize=(12, 5)) if not df.empty: axes[0].hist(df['area'], bins=20, color='cyan', edgecolor='black') axes[0].set_title('Cell Size Distribution') axes[1].scatter(df['area'], df['circularity'], alpha=0.6, c='magenta') axes[1].set_title('Area vs Circularity') return vis_img, mask, fig, df # Gradio Interface demo = gr.Interface(fn=analyze, inputs=gr.Image(type="numpy"), outputs=[gr.Image(), gr.Image(), gr.Plot(), gr.Dataframe()]) demo.launch()