import cv2 import numpy as np import pandas as pd import gradio as gr from skimage import measure, morphology from skimage.segmentation import watershed import matplotlib.pyplot as plt import base64 from datetime import datetime def apply_color_transformation(image, transform_type): """Apply different color transformations to the image""" if len(image.shape) == 3: image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) if transform_type == "Original": return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) elif transform_type == "Grayscale": return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) elif transform_type == "Binary": gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) _, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) return binary elif transform_type == "CLAHE": gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8)) return clahe.apply(gray) return image def process_image(image, transform_type): """Process uploaded image and extract cell features""" if image is None: return None, None, None, None # Store original image for color transformations original_image = image.copy() # Process image as before if len(image.shape) == 3: image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Basic preprocessing gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8)) enhanced = clahe.apply(gray) blurred = cv2.medianBlur(enhanced, 5) # [Rest of the processing code remains the same until visualization] # Create enhanced visualization with timestamp timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") vis_img = image.copy() contours = measure.find_contours(markers, 0.5) # Draw contours and cell IDs with improved visibility for contour in contours: coords = contour.astype(int) cv2.drawContours(vis_img, [coords], -1, (0,255,0), 2) # Thicker lines for region in measure.regionprops(markers): if region.area >= 50: y, x = region.centroid # Add white background for better text visibility cv2.putText(vis_img, str(region.label), (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 2) # White outline cv2.putText(vis_img, str(region.label), (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,255), 1) # Red text # Add timestamp and cell count cv2.putText(vis_img, f"Analyzed: {timestamp}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,255), 2) # Create summary plots with improved styling plt.style.use('seaborn') fig, axes = plt.subplots(2, 2, figsize=(15, 12)) fig.suptitle('Cell Analysis Results', fontsize=16, y=0.95) df = pd.DataFrame(features) if not df.empty: # Distribution plots df['area'].hist(ax=axes[0,0], bins=20, color='skyblue', edgecolor='black') axes[0,0].set_title('Cell Size Distribution') axes[0,0].set_xlabel('Area') axes[0,0].set_ylabel('Count') df['circularity'].hist(ax=axes[0,1], bins=20, color='lightgreen', edgecolor='black') axes[0,1].set_title('Circularity Distribution') axes[0,1].set_xlabel('Circularity') axes[0,1].set_ylabel('Count') # Scatter plots axes[1,0].scatter(df['circularity'], df['mean_intensity'], alpha=0.6, c='purple') axes[1,0].set_title('Circularity vs Intensity') axes[1,0].set_xlabel('Circularity') axes[1,0].set_ylabel('Mean Intensity') # Add box plot df.boxplot(column=['area', 'circularity'], ax=axes[1,1]) axes[1,1].set_title('Feature Distributions') else: for ax in axes.flat: ax.text(0.5, 0.5, 'No cells detected', ha='center', va='center') plt.tight_layout() # Apply color transformation to original image transformed_image = apply_color_transformation(original_image, transform_type) return ( cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB), transformed_image, fig, df ) # Create enhanced Gradio interface with gr.Blocks(title="Advanced Cell Analysis Tool", theme=gr.themes.Soft()) as demo: gr.Markdown(""" # 🔬 Advanced Bioengineering Cell Analysis Tool ## Features - 🔍 Automated cell detection and measurement - 📊 Comprehensive statistical analysis - 🎨 Multiple visualization options - 📥 Downloadable results ## Author - **Muhammad Ibrahim Qasmi** - [LinkedIn](https://www.linkedin.com/in/muhammad-ibrahim-qasmi-9876a1297/) - [GitHub](https://github.com/yourusername) """) with gr.Row(): with gr.Column(scale=1): input_image = gr.Image( label="Upload Image", type="numpy" ) transform_type = gr.Dropdown( choices=["Original", "Grayscale", "Binary", "CLAHE"], value="Original", label="Image Transform" ) analyze_btn = gr.Button( "Analyze Image", variant="primary", size="lg" ) with gr.Column(scale=2): with gr.Tabs(): with gr.Tab("Analysis Results"): output_image = gr.Image( label="Detected Cells" ) gr.Markdown("*Green contours show detected cells, red numbers are cell IDs*") with gr.Tab("Image Transformations"): transformed_image = gr.Image( label="Transformed Image" ) gr.Markdown("*Select different transformations from the dropdown menu*") with gr.Tab("Statistics"): output_plot = gr.Plot( label="Statistical Analysis" ) gr.Markdown("*Hover over plots for detailed values*") with gr.Tab("Data"): output_table = gr.DataFrame( label="Cell Features" ) download_btn = gr.Button( "Download Results", variant="secondary" ) # Add footer gr.Markdown(""" --- ### 📝 Notes - Supported image formats: PNG, JPG, JPEG - Minimum recommended resolution: 512x512 pixels - Processing time varies with image size and cell count *Last updated: January 2025* """) analyze_btn.click( fn=process_image, inputs=[input_image, transform_type], outputs=[output_image, transformed_image, output_plot, output_table] ) # Launch the demo if __name__ == "__main__": demo.launch()