Spaces:
Running
Running
File size: 12,419 Bytes
d896b5f 2a918a3 21e772e d896b5f 2a918a3 21e772e d896b5f 21e772e d896b5f 2a918a3 d896b5f 21e772e 2a918a3 21e772e 8c1f293 21e772e 8c1f293 21e772e 8c1f293 21e772e 8c1f293 21e772e 8c1f293 2a918a3 21e772e 2a918a3 8c1f293 21e772e 8c1f293 2a918a3 21e772e 2a918a3 21e772e 8c1f293 21e772e 2a918a3 8c1f293 21e772e 2a918a3 8c1f293 21e772e 2a918a3 21e772e 2a918a3 8c1f293 21e772e 2a918a3 21e772e 77057e7 26371fd 21e772e 2a918a3 8c1f293 2a918a3 8c1f293 21e772e 2a918a3 21e772e 8c1f293 21e772e 8c1f293 2a918a3 21e772e 8c1f293 2a918a3 8c1f293 2a918a3 21e772e 8c1f293 2a918a3 8c1f293 2a918a3 21e772e 2a918a3 8c1f293 2a918a3 21e772e 2a918a3 8c1f293 2a918a3 d896b5f 21e772e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import streamlit as st
import os
from groq import Groq
from typing import List, Dict, Optional, Union
import json
from datetime import datetime
import time
from functools import lru_cache
import logging
from contextlib import contextmanager
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
MAX_RETRIES = 3
RETRY_DELAY = 1
DEFAULT_TEMPERATURE = 0.5
MAX_TOKENS = 1024
MODEL_NAME = "llama3-8b-8192"
class APIError(Exception):
"""Custom exception for API-related errors"""
pass
class JSONParsingError(Exception):
"""Custom exception for JSON parsing errors"""
pass
@contextmanager
def error_handler(context: str):
"""Context manager for handling errors with specific context"""
try:
yield
except Exception as e:
logger.error(f"Error in {context}: {str(e)}")
st.error(f"An error occurred in {context}. Please try again.")
raise
@st.cache_resource
def get_groq_client() -> Groq:
"""Initialize and cache Groq client"""
try:
return Groq(api_key=st.secrets["groq_api_key"])
except Exception as e:
logger.error(f"Failed to initialize Groq client: {str(e)}")
st.error("Failed to initialize AI service. Please check your API key.")
raise APIError("Failed to initialize Groq client")
class ContentAnalysisAgent:
def __init__(self):
"""Initialize the agent with Groq client and default settings"""
self.client = get_groq_client()
self.system_prompt = """You are an expert social media content analyzer with deep understanding of engagement,
audience psychology, and content optimization. You must ALWAYS return responses in valid JSON format when requested.
Analyze content step by step using a systematic approach."""
@staticmethod
def _display_thinking(thought: str):
"""Display agent's thinking process in a collapsible container"""
with st.expander("π€ Analysis Process", expanded=False):
st.markdown(f"```\n{thought}\n```")
def _call_api(self, messages: List[Dict], retries: int = MAX_RETRIES) -> Optional[str]:
"""Make API call with retry logic"""
for attempt in range(retries):
try:
response = self.client.chat.completions.create(
messages=messages,
model=MODEL_NAME,
temperature=DEFAULT_TEMPERATURE,
max_tokens=MAX_TOKENS
)
return response.choices[0].message.content
except Exception as e:
if attempt == retries - 1:
logger.error(f"API call failed after {retries} attempts: {str(e)}")
raise APIError(f"Failed to get response from AI service: {str(e)}")
time.sleep(RETRY_DELAY)
return None
@staticmethod
def _parse_json(response: str) -> Dict:
"""Parse JSON from response with enhanced error handling"""
try:
# First attempt: direct JSON parsing
return json.loads(response)
except json.JSONDecodeError:
try:
# Second attempt: extract JSON structure
start_idx = response.find('{')
end_idx = response.rfind('}') + 1
if start_idx != -1 and end_idx > start_idx:
json_str = response[start_idx:end_idx]
# Clean up common formatting issues
json_str = (json_str.replace('\n', ' ')
.replace('```json', '')
.replace('```', '')
.strip())
return json.loads(json_str)
except (json.JSONDecodeError, ValueError) as e:
logger.warning(f"JSON parsing failed: {str(e)}")
# Return fallback structure
return {
"style": "unknown",
"tones": ["neutral"],
"rating": "3",
"engagement_score": "50",
"analysis": {
"strengths": ["Content provided"],
"improvements": ["Format needs review"],
"audience_fit": "medium"
},
"error": "Response parsing failed"
}
def analyze_post(self, post_text: str) -> Dict:
"""Analyze post content with comprehensive error handling"""
analysis_prompt = f"""Analyze this social media post and return ONLY a valid JSON object:
POST: {post_text}
Required structure:
{{
"style": "posting style",
"tones": ["tone1", "tone2"],
"rating": "1-5",
"engagement_score": "0-100",
"analysis": {{
"strengths": ["strength1", "strength2"],
"improvements": ["improvement1", "improvement2"],
"audience_fit": "low/medium/high"
}}
}}"""
messages = [
{"role": "system", "content": self.system_prompt},
{"role": "user", "content": analysis_prompt}
]
with st.spinner("π Analyzing content..."):
try:
analysis_response = self._call_api(messages)
if not analysis_response:
raise APIError("No response received from API")
analysis_result = self._parse_json(analysis_response)
# Get recommendations
recommendation_prompt = """Provide exactly 3 specific, actionable recommendations
to improve engagement. Return as a JSON array of strings."""
messages.append({"role": "user", "content": recommendation_prompt})
recommendations = self._call_api(messages)
if recommendations:
try:
parsed_recommendations = json.loads(recommendations)
if isinstance(parsed_recommendations, list):
analysis_result["recommendations"] = parsed_recommendations
else:
analysis_result["recommendations"] = [recommendations.strip()]
except json.JSONDecodeError:
analysis_result["recommendations"] = [recommendations.strip()]
return analysis_result
except Exception as e:
logger.error(f"Analysis failed: {str(e)}")
st.error("Analysis failed. Please try again.")
return None
class GraicieApp:
def __init__(self):
"""Initialize the Graicie application"""
self.agent = ContentAnalysisAgent()
self.example_posts = {
"Viral Marketing": "π HUGE ANNOUNCEMENT! After months of work, my online course is finally LIVE! π\n"
"Learn how I grew from 0 to 100K followers in 6 months! Early bird pricing ends tomorrow! π«\n"
"#socialmedia #digitalmarketing #success",
"Personal Story": "Sometimes life throws you curveballs... Today I faced my biggest fear and went "
"skydiving! πͺ Swipe to see my reaction! Remember: growth happens outside your comfort zone π\n"
"#personalgrowth #motivation",
"Educational": "π§ 5 Python Tips You Didn't Know:\n1. List comprehensions\n2. f-strings\n3. Walrus operator\n"
"4. Context managers\n5. Lambda functions\nSave this for later! π‘\n#coding #programming"
}
def _display_header(self):
"""Display application header"""
st.title("π€ Project Graicie - Advanced Content Analyzer")
st.markdown("""
### Powered by LLaMA 3 & Agentic AI
Get deep, AI-powered insights into your social media content using advanced language models.
""")
def _display_metrics(self, results: Dict):
"""Display analysis metrics in a structured format"""
if not results:
return
# Main metrics
cols = st.columns(4)
with cols[0]:
st.metric("Style", results["style"])
with cols[1]:
st.metric("Engagement", f"{results['engagement_score']}/100")
with cols[2]:
st.metric("Rating", f"{results['rating']}/5")
with cols[3]:
st.metric("Audience Fit", results["analysis"]["audience_fit"])
# Content tones
st.subheader("π Content Tones")
tone_html = " ".join([
f"<span style='background-color: black ; padding: 4px 8px; "
f"margin: 4px; border-radius: 12px;'>{tone}</span>"
for tone in results["tones"]
])
st.markdown(tone_html, unsafe_allow_html=True)
# Analysis details
col1, col2 = st.columns(2)
with col1:
st.subheader("πͺ Strengths")
for strength in results["analysis"]["strengths"]:
st.markdown(f"β
{strength}")
with col2:
st.subheader("π― Areas to Improve")
for improvement in results["analysis"]["improvements"]:
st.markdown(f"π {improvement}")
# Recommendations
if "recommendations" in results:
st.subheader("π Specific Recommendations")
for idx, rec in enumerate(results["recommendations"], 1):
st.markdown(f"{idx}. {rec}")
def _display_sidebar(self):
"""Display sidebar with tips and information"""
with st.sidebar:
st.subheader("π‘ Pro Tips")
st.info("""
**Content Best Practices:**
1. Tell authentic stories
2. Use relevant hashtags
3. Include call-to-actions
4. Add visual elements
5. Engage with questions
""")
st.markdown("### π Optimal Post Elements")
st.markdown("""
- Length: 80-150 characters
- Hashtags: 3-5 relevant tags
- Emojis: 2-3 key emojis
- CTA: One clear action
""")
def run(self):
"""Run the Graicie application"""
self._display_header()
self._display_sidebar()
# Main content area
col1, col2 = st.columns([2, 1])
with col1:
st.subheader("π± Try an Example Post")
selected_example = st.selectbox(
"Select an example:",
list(self.example_posts.keys())
)
if selected_example:
example_text = self.example_posts[selected_example]
st.text_area("Example Post", example_text, height=100, disabled=True)
if st.button("Analyze Example", use_container_width=True):
with error_handler("example analysis"):
results = self.agent.analyze_post(example_text)
self._display_metrics(results)
st.subheader("π Analyze Your Post")
user_post = st.text_area(
"Enter your post content:",
height=150,
placeholder="Type or paste your content here..."
)
if st.button("π Analyze My Post", use_container_width=True):
if user_post:
with error_handler("user post analysis"):
results = self.agent.analyze_post(user_post)
self._display_metrics(results)
else:
st.warning("Please enter some content to analyze!")
# Footer
st.markdown(
"""
<div style='text-align: center; padding: 20px;'>
<p style='color: #666;'>
Powered by LLaMA 3 & Groq | Made with β€οΈ by Project Graicie Team |
Β© 2024 Project Graicie
</p>
</div>
""",
unsafe_allow_html=True,
)
if __name__ == "__main__":
try:
app = GraicieApp()
app.run()
except Exception as e:
logger.error(f"Application failed to start: {str(e)}")
st.error("Application failed to start. Please check the logs.") |