Spaces:
Configuration error
Configuration error
File size: 24,592 Bytes
24bde82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 |
print("\rloading torch ", end="")
import torch
print("\rloading numpy ", end="")
import numpy as np
print("\rloading Image ", end="")
from PIL import Image
print("\rloading argparse ", end="")
import argparse
print("\rloading configparser", end="")
import configparser
print("\rloading math ", end="")
import math
print("\rloading os ", end="")
import os
print("\rloading subprocess ", end="")
import subprocess
print("\rloading pickle ", end="")
import pickle
print("\rloading cv2 ", end="")
import cv2
print("\rloading audio ", end="")
import audio
print("\rloading RetinaFace ", end="")
from batch_face import RetinaFace
print("\rloading re ", end="")
import re
print("\rloading partial ", end="")
from functools import partial
print("\rloading tqdm ", end="")
from tqdm import tqdm
print("\rloading warnings ", end="")
import warnings
warnings.filterwarnings(
"ignore", category=UserWarning, module="torchvision.transforms.functional_tensor"
)
print("\rloading upscale ", end="")
from enhance import upscale
print("\rloading load_sr ", end="")
from enhance import load_sr
print("\rloading load_model ", end="")
from easy_functions import load_model, g_colab
print("\rimports loaded! ")
device = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
gpu_id = 0 if torch.cuda.is_available() else -1
if device == 'cpu':
print('Warning: No GPU detected so inference will be done on the CPU which is VERY SLOW!')
parser = argparse.ArgumentParser(
description="Inference code to lip-sync videos in the wild using Wav2Lip models"
)
parser.add_argument(
"--checkpoint_path",
type=str,
help="Name of saved checkpoint to load weights from",
required=True,
)
parser.add_argument(
"--segmentation_path",
type=str,
default="checkpoints/face_segmentation.pth",
help="Name of saved checkpoint of segmentation network",
required=False,
)
parser.add_argument(
"--face",
type=str,
help="Filepath of video/image that contains faces to use",
required=True,
)
parser.add_argument(
"--audio",
type=str,
help="Filepath of video/audio file to use as raw audio source",
required=True,
)
parser.add_argument(
"--outfile",
type=str,
help="Video path to save result. See default for an e.g.",
default="results/result_voice.mp4",
)
parser.add_argument(
"--static",
type=bool,
help="If True, then use only first video frame for inference",
default=False,
)
parser.add_argument(
"--fps",
type=float,
help="Can be specified only if input is a static image (default: 25)",
default=25.0,
required=False,
)
parser.add_argument(
"--pads",
nargs="+",
type=int,
default=[0, 10, 0, 0],
help="Padding (top, bottom, left, right). Please adjust to include chin at least",
)
parser.add_argument(
"--wav2lip_batch_size", type=int, help="Batch size for Wav2Lip model(s)", default=1
)
parser.add_argument(
"--out_height",
default=480,
type=int,
help="Output video height. Best results are obtained at 480 or 720",
)
parser.add_argument(
"--crop",
nargs="+",
type=int,
default=[0, -1, 0, -1],
help="Crop video to a smaller region (top, bottom, left, right). Applied after resize_factor and rotate arg. "
"Useful if multiple face present. -1 implies the value will be auto-inferred based on height, width",
)
parser.add_argument(
"--box",
nargs="+",
type=int,
default=[-1, -1, -1, -1],
help="Specify a constant bounding box for the face. Use only as a last resort if the face is not detected."
"Also, might work only if the face is not moving around much. Syntax: (top, bottom, left, right).",
)
parser.add_argument(
"--rotate",
default=False,
action="store_true",
help="Sometimes videos taken from a phone can be flipped 90deg. If true, will flip video right by 90deg."
"Use if you get a flipped result, despite feeding a normal looking video",
)
parser.add_argument(
"--nosmooth",
type=str,
default=False,
help="Prevent smoothing face detections over a short temporal window",
)
parser.add_argument(
"--no_seg",
default=False,
action="store_true",
help="Prevent using face segmentation",
)
parser.add_argument(
"--no_sr", default=False, action="store_true", help="Prevent using super resolution"
)
parser.add_argument(
"--sr_model",
type=str,
default="gfpgan",
help="Name of upscaler - gfpgan or RestoreFormer",
required=False,
)
parser.add_argument(
"--fullres",
default=3,
type=int,
help="used only to determine if full res is used so that no resizing needs to be done if so",
)
parser.add_argument(
"--debug_mask",
type=str,
default=False,
help="Makes background grayscale to see the mask better",
)
parser.add_argument(
"--preview_settings", type=str, default=False, help="Processes only one frame"
)
parser.add_argument(
"--mouth_tracking",
type=str,
default=False,
help="Tracks the mouth in every frame for the mask",
)
parser.add_argument(
"--mask_dilation",
default=150,
type=float,
help="size of mask around mouth",
required=False,
)
parser.add_argument(
"--mask_feathering",
default=151,
type=int,
help="amount of feathering of mask around mouth",
required=False,
)
parser.add_argument(
"--quality",
type=str,
help="Choose between Fast, Improved and Enhanced",
default="Fast",
)
with open(os.path.join("checkpoints", "predictor.pkl"), "rb") as f:
predictor = pickle.load(f)
with open(os.path.join("checkpoints", "mouth_detector.pkl"), "rb") as f:
mouth_detector = pickle.load(f)
# creating variables to prevent failing when a face isn't detected
kernel = last_mask = x = y = w = h = None
g_colab = g_colab()
if not g_colab:
# Load the config file
config = configparser.ConfigParser()
config.read('config.ini')
# Get the value of the "preview_window" variable
preview_window = config.get('OPTIONS', 'preview_window')
all_mouth_landmarks = []
model = detector = detector_model = None
def do_load(checkpoint_path):
global model, detector, detector_model
model = load_model(checkpoint_path)
detector = RetinaFace(
gpu_id=gpu_id, model_path="checkpoints/mobilenet.pth", network="mobilenet"
)
detector_model = detector.model
def face_rect(images):
face_batch_size = 8
num_batches = math.ceil(len(images) / face_batch_size)
prev_ret = None
for i in range(num_batches):
batch = images[i * face_batch_size : (i + 1) * face_batch_size]
all_faces = detector(batch) # return faces list of all images
for faces in all_faces:
if faces:
box, landmarks, score = faces[0]
prev_ret = tuple(map(int, box))
yield prev_ret
def create_tracked_mask(img, original_img):
global kernel, last_mask, x, y, w, h # Add last_mask to global variables
# Convert color space from BGR to RGB if necessary
cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
cv2.cvtColor(original_img, cv2.COLOR_BGR2RGB, original_img)
# Detect face
faces = mouth_detector(img)
if len(faces) == 0:
if last_mask is not None:
last_mask = cv2.resize(last_mask, (img.shape[1], img.shape[0]))
mask = last_mask # use the last successful mask
else:
cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
return img, None
else:
face = faces[0]
shape = predictor(img, face)
# Get points for mouth
mouth_points = np.array(
[[shape.part(i).x, shape.part(i).y] for i in range(48, 68)]
)
# Calculate bounding box dimensions
x, y, w, h = cv2.boundingRect(mouth_points)
# Set kernel size as a fraction of bounding box size
kernel_size = int(max(w, h) * args.mask_dilation)
# if kernel_size % 2 == 0: # Ensure kernel size is odd
# kernel_size += 1
# Create kernel
kernel = np.ones((kernel_size, kernel_size), np.uint8)
# Create binary mask for mouth
mask = np.zeros(img.shape[:2], dtype=np.uint8)
cv2.fillConvexPoly(mask, mouth_points, 255)
last_mask = mask # Update last_mask with the new mask
# Dilate the mask
dilated_mask = cv2.dilate(mask, kernel)
# Calculate distance transform of dilated mask
dist_transform = cv2.distanceTransform(dilated_mask, cv2.DIST_L2, 5)
# Normalize distance transform
cv2.normalize(dist_transform, dist_transform, 0, 255, cv2.NORM_MINMAX)
# Convert normalized distance transform to binary mask and convert it to uint8
_, masked_diff = cv2.threshold(dist_transform, 50, 255, cv2.THRESH_BINARY)
masked_diff = masked_diff.astype(np.uint8)
# make sure blur is an odd number
blur = args.mask_feathering
if blur % 2 == 0:
blur += 1
# Set blur size as a fraction of bounding box size
blur = int(max(w, h) * blur) # 10% of bounding box size
if blur % 2 == 0: # Ensure blur size is odd
blur += 1
masked_diff = cv2.GaussianBlur(masked_diff, (blur, blur), 0)
# Convert numpy arrays to PIL Images
input1 = Image.fromarray(img)
input2 = Image.fromarray(original_img)
# Convert mask to single channel where pixel values are from the alpha channel of the current mask
mask = Image.fromarray(masked_diff)
# Ensure images are the same size
assert input1.size == input2.size == mask.size
# Paste input1 onto input2 using the mask
input2.paste(input1, (0, 0), mask)
# Convert the final PIL Image back to a numpy array
input2 = np.array(input2)
# input2 = cv2.cvtColor(input2, cv2.COLOR_BGR2RGB)
cv2.cvtColor(input2, cv2.COLOR_BGR2RGB, input2)
return input2, mask
def create_mask(img, original_img):
global kernel, last_mask, x, y, w, h # Add last_mask to global variables
# Convert color space from BGR to RGB if necessary
cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
cv2.cvtColor(original_img, cv2.COLOR_BGR2RGB, original_img)
if last_mask is not None:
last_mask = np.array(last_mask) # Convert PIL Image to numpy array
last_mask = cv2.resize(last_mask, (img.shape[1], img.shape[0]))
mask = last_mask # use the last successful mask
mask = Image.fromarray(mask)
else:
# Detect face
faces = mouth_detector(img)
if len(faces) == 0:
cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
return img, None
else:
face = faces[0]
shape = predictor(img, face)
# Get points for mouth
mouth_points = np.array(
[[shape.part(i).x, shape.part(i).y] for i in range(48, 68)]
)
# Calculate bounding box dimensions
x, y, w, h = cv2.boundingRect(mouth_points)
# Set kernel size as a fraction of bounding box size
kernel_size = int(max(w, h) * args.mask_dilation)
# if kernel_size % 2 == 0: # Ensure kernel size is odd
# kernel_size += 1
# Create kernel
kernel = np.ones((kernel_size, kernel_size), np.uint8)
# Create binary mask for mouth
mask = np.zeros(img.shape[:2], dtype=np.uint8)
cv2.fillConvexPoly(mask, mouth_points, 255)
# Dilate the mask
dilated_mask = cv2.dilate(mask, kernel)
# Calculate distance transform of dilated mask
dist_transform = cv2.distanceTransform(dilated_mask, cv2.DIST_L2, 5)
# Normalize distance transform
cv2.normalize(dist_transform, dist_transform, 0, 255, cv2.NORM_MINMAX)
# Convert normalized distance transform to binary mask and convert it to uint8
_, masked_diff = cv2.threshold(dist_transform, 50, 255, cv2.THRESH_BINARY)
masked_diff = masked_diff.astype(np.uint8)
if not args.mask_feathering == 0:
blur = args.mask_feathering
# Set blur size as a fraction of bounding box size
blur = int(max(w, h) * blur) # 10% of bounding box size
if blur % 2 == 0: # Ensure blur size is odd
blur += 1
masked_diff = cv2.GaussianBlur(masked_diff, (blur, blur), 0)
# Convert mask to single channel where pixel values are from the alpha channel of the current mask
mask = Image.fromarray(masked_diff)
last_mask = mask # Update last_mask with the final mask after dilation and feathering
# Convert numpy arrays to PIL Images
input1 = Image.fromarray(img)
input2 = Image.fromarray(original_img)
# Resize mask to match image size
# mask = Image.fromarray(mask)
mask = mask.resize(input1.size)
# Ensure images are the same size
assert input1.size == input2.size == mask.size
# Paste input1 onto input2 using the mask
input2.paste(input1, (0, 0), mask)
# Convert the final PIL Image back to a numpy array
input2 = np.array(input2)
# input2 = cv2.cvtColor(input2, cv2.COLOR_BGR2RGB)
cv2.cvtColor(input2, cv2.COLOR_BGR2RGB, input2)
return input2, mask
def get_smoothened_boxes(boxes, T):
for i in range(len(boxes)):
if i + T > len(boxes):
window = boxes[len(boxes) - T :]
else:
window = boxes[i : i + T]
boxes[i] = np.mean(window, axis=0)
return boxes
def face_detect(images, results_file="last_detected_face.pkl"):
# If results file exists, load it and return
if os.path.exists(results_file):
print("Using face detection data from last input")
with open(results_file, "rb") as f:
return pickle.load(f)
results = []
pady1, pady2, padx1, padx2 = args.pads
tqdm_partial = partial(tqdm, position=0, leave=True)
for image, (rect) in tqdm_partial(
zip(images, face_rect(images)),
total=len(images),
desc="detecting face in every frame",
ncols=100,
):
if rect is None:
cv2.imwrite(
"temp/faulty_frame.jpg", image
) # check this frame where the face was not detected.
raise ValueError(
"Face not detected! Ensure the video contains a face in all the frames."
)
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
results.append([x1, y1, x2, y2])
boxes = np.array(results)
if str(args.nosmooth) == "False":
boxes = get_smoothened_boxes(boxes, T=5)
results = [
[image[y1:y2, x1:x2], (y1, y2, x1, x2)]
for image, (x1, y1, x2, y2) in zip(images, boxes)
]
# Save results to file
with open(results_file, "wb") as f:
pickle.dump(results, f)
return results
def datagen(frames, mels):
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
print("\r" + " " * 100, end="\r")
if args.box[0] == -1:
if not args.static:
face_det_results = face_detect(frames) # BGR2RGB for CNN face detection
else:
face_det_results = face_detect([frames[0]])
else:
print("Using the specified bounding box instead of face detection...")
y1, y2, x1, x2 = args.box
face_det_results = [[f[y1:y2, x1:x2], (y1, y2, x1, x2)] for f in frames]
for i, m in enumerate(mels):
idx = 0 if args.static else i % len(frames)
frame_to_save = frames[idx].copy()
face, coords = face_det_results[idx].copy()
face = cv2.resize(face, (args.img_size, args.img_size))
img_batch.append(face)
mel_batch.append(m)
frame_batch.append(frame_to_save)
coords_batch.append(coords)
if len(img_batch) >= args.wav2lip_batch_size:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, args.img_size // 2 :] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.0
mel_batch = np.reshape(
mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]
)
yield img_batch, mel_batch, frame_batch, coords_batch
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if len(img_batch) > 0:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, args.img_size // 2 :] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.0
mel_batch = np.reshape(
mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]
)
yield img_batch, mel_batch, frame_batch, coords_batch
mel_step_size = 16
def _load(checkpoint_path):
if device != "cpu":
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(
checkpoint_path, map_location=lambda storage, loc: storage
)
return checkpoint
def main():
args.img_size = 96
frame_number = 11
if os.path.isfile(args.face) and args.face.split(".")[1] in ["jpg", "png", "jpeg"]:
args.static = True
if not os.path.isfile(args.face):
raise ValueError("--face argument must be a valid path to video/image file")
elif args.face.split(".")[1] in ["jpg", "png", "jpeg"]:
full_frames = [cv2.imread(args.face)]
fps = args.fps
else:
if args.fullres != 1:
print("Resizing video...")
video_stream = cv2.VideoCapture(args.face)
fps = video_stream.get(cv2.CAP_PROP_FPS)
full_frames = []
while 1:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
if args.fullres != 1:
aspect_ratio = frame.shape[1] / frame.shape[0]
frame = cv2.resize(
frame, (int(args.out_height * aspect_ratio), args.out_height)
)
if args.rotate:
frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE)
y1, y2, x1, x2 = args.crop
if x2 == -1:
x2 = frame.shape[1]
if y2 == -1:
y2 = frame.shape[0]
frame = frame[y1:y2, x1:x2]
full_frames.append(frame)
if not args.audio.endswith(".wav"):
print("Converting audio to .wav")
subprocess.check_call(
[
"ffmpeg",
"-y",
"-loglevel",
"error",
"-i",
args.audio,
"temp/temp.wav",
]
)
args.audio = "temp/temp.wav"
print("analysing audio...")
wav = audio.load_wav(args.audio, 16000)
mel = audio.melspectrogram(wav)
if np.isnan(mel.reshape(-1)).sum() > 0:
raise ValueError(
"Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again"
)
mel_chunks = []
mel_idx_multiplier = 80.0 / fps
i = 0
while 1:
start_idx = int(i * mel_idx_multiplier)
if start_idx + mel_step_size > len(mel[0]):
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size :])
break
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
i += 1
full_frames = full_frames[: len(mel_chunks)]
if str(args.preview_settings) == "True":
full_frames = [full_frames[0]]
mel_chunks = [mel_chunks[0]]
print(str(len(full_frames)) + " frames to process")
batch_size = args.wav2lip_batch_size
if str(args.preview_settings) == "True":
gen = datagen(full_frames, mel_chunks)
else:
gen = datagen(full_frames.copy(), mel_chunks)
for i, (img_batch, mel_batch, frames, coords) in enumerate(
tqdm(
gen,
total=int(np.ceil(float(len(mel_chunks)) / batch_size)),
desc="Processing Wav2Lip",
ncols=100,
)
):
if i == 0:
if not args.quality == "Fast":
print(
f"mask size: {args.mask_dilation}, feathering: {args.mask_feathering}"
)
if not args.quality == "Improved":
print("Loading", args.sr_model)
run_params = load_sr()
print("Starting...")
frame_h, frame_w = full_frames[0].shape[:-1]
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter("temp/result.mp4", fourcc, fps, (frame_w, frame_h))
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
with torch.no_grad():
pred = model(mel_batch, img_batch)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.0
for p, f, c in zip(pred, frames, coords):
# cv2.imwrite('temp/f.jpg', f)
y1, y2, x1, x2 = c
if (
str(args.debug_mask) == "True"
): # makes the background black & white so you can see the mask better
f = cv2.cvtColor(f, cv2.COLOR_BGR2GRAY)
f = cv2.cvtColor(f, cv2.COLOR_GRAY2BGR)
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
cf = f[y1:y2, x1:x2]
if args.quality == "Enhanced":
p = upscale(p, run_params)
if args.quality in ["Enhanced", "Improved"]:
if str(args.mouth_tracking) == "True":
p, last_mask = create_tracked_mask(p, cf)
else:
p, last_mask = create_mask(p, cf)
f[y1:y2, x1:x2] = p
if not g_colab:
# Display the frame
if preview_window == "Face":
cv2.imshow("face preview - press Q to abort", p)
elif preview_window == "Full":
cv2.imshow("full preview - press Q to abort", f)
elif preview_window == "Both":
cv2.imshow("face preview - press Q to abort", p)
cv2.imshow("full preview - press Q to abort", f)
key = cv2.waitKey(1) & 0xFF
if key == ord('q'):
exit() # Exit the loop when 'Q' is pressed
if str(args.preview_settings) == "True":
cv2.imwrite("temp/preview.jpg", f)
if not g_colab:
cv2.imshow("preview - press Q to close", f)
if cv2.waitKey(-1) & 0xFF == ord('q'):
exit() # Exit the loop when 'Q' is pressed
else:
out.write(f)
# Close the window(s) when done
cv2.destroyAllWindows()
out.release()
if str(args.preview_settings) == "False":
print("converting to final video")
subprocess.check_call([
"ffmpeg",
"-y",
"-loglevel",
"error",
"-i",
"temp/result.mp4",
"-i",
args.audio,
"-c:v",
"libx264",
args.outfile
])
if __name__ == "__main__":
args = parser.parse_args()
do_load(args.checkpoint_path)
main()
|