import torch import subprocess import json import os import dlib import gdown import pickle import re from models import Wav2Lip from base64 import b64encode from urllib.parse import urlparse from torch.hub import download_url_to_file, get_dir from IPython.display import HTML, display device = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu' def get_video_details(filename): cmd = [ "ffprobe", "-v", "error", "-show_format", "-show_streams", "-of", "json", filename, ] result = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) info = json.loads(result.stdout) # Get video stream video_stream = next( stream for stream in info["streams"] if stream["codec_type"] == "video" ) # Get resolution width = int(video_stream["width"]) height = int(video_stream["height"]) resolution = width * height # Get fps fps = eval(video_stream["avg_frame_rate"]) # Get length length = float(info["format"]["duration"]) return width, height, fps, length def show_video(file_path): """Function to display video in Colab""" mp4 = open(file_path, "rb").read() data_url = "data:video/mp4;base64," + b64encode(mp4).decode() width, _, _, _ = get_video_details(file_path) display( HTML( """ """ % (min(width, 1280), data_url) ) ) def format_time(seconds): hours = int(seconds // 3600) minutes = int((seconds % 3600) // 60) seconds = int(seconds % 60) if hours > 0: return f"{hours}h {minutes}m {seconds}s" elif minutes > 0: return f"{minutes}m {seconds}s" else: return f"{seconds}s" def _load(checkpoint_path): if device != "cpu": checkpoint = torch.load(checkpoint_path) else: checkpoint = torch.load( checkpoint_path, map_location=lambda storage, loc: storage ) return checkpoint def load_model(path): # If results file exists, load it and return working_directory = os.getcwd() folder, filename_with_extension = os.path.split(path) filename, file_type = os.path.splitext(filename_with_extension) results_file = os.path.join(folder, filename + ".pk1") if os.path.exists(results_file): with open(results_file, "rb") as f: return pickle.load(f) model = Wav2Lip() print("Loading {}".format(path)) checkpoint = _load(path) s = checkpoint["state_dict"] new_s = {} for k, v in s.items(): new_s[k.replace("module.", "")] = v model.load_state_dict(new_s) model = model.to(device) # Save results to file with open(results_file, "wb") as f: pickle.dump(model.eval(), f) # os.remove(path) return model.eval() def get_input_length(filename): result = subprocess.run( [ "ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", filename, ], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, ) return float(result.stdout) def is_url(string): url_regex = re.compile(r"^(https?|ftp)://[^\s/$.?#].[^\s]*$") return bool(url_regex.match(string)) def load_predictor(): checkpoint = os.path.join( "checkpoints", "shape_predictor_68_face_landmarks_GTX.dat" ) predictor = dlib.shape_predictor(checkpoint) mouth_detector = dlib.get_frontal_face_detector() # Serialize the variables with open(os.path.join("checkpoints", "predictor.pkl"), "wb") as f: pickle.dump(predictor, f) with open(os.path.join("checkpoints", "mouth_detector.pkl"), "wb") as f: pickle.dump(mouth_detector, f) # delete the .dat file as it is no longer needed # os.remove(output) def load_file_from_url(url, model_dir=None, progress=True, file_name=None): """Load file form http url, will download models if necessary. Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py Args: url (str): URL to be downloaded. model_dir (str): The path to save the downloaded model. Should be a full path. If None, use pytorch hub_dir. Default: None. progress (bool): Whether to show the download progress. Default: True. file_name (str): The downloaded file name. If None, use the file name in the url. Default: None. Returns: str: The path to the downloaded file. """ if model_dir is None: # use the pytorch hub_dir hub_dir = get_dir() model_dir = os.path.join(hub_dir, "checkpoints") os.makedirs(model_dir, exist_ok=True) parts = urlparse(url) filename = os.path.basename(parts.path) if file_name is not None: filename = file_name cached_file = os.path.abspath(os.path.join(model_dir, filename)) if not os.path.exists(cached_file): print(f'Downloading: "{url}" to {cached_file}\n') download_url_to_file(url, cached_file, hash_prefix=None, progress=progress) return cached_file def g_colab(): try: import google.colab return True except ImportError: return False