Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import gc
|
3 |
import cv2
|
@@ -11,30 +47,68 @@ from implement import *
|
|
11 |
# from main import build_loaders
|
12 |
# from CLIP import CLIPModel
|
13 |
import os
|
14 |
-
import zipfile
|
15 |
|
16 |
-
# Define the filename
|
17 |
-
zip_filename = 'Images.zip'
|
18 |
|
19 |
-
import os
|
20 |
-
import zipfile
|
21 |
|
|
|
|
|
22 |
with gr.Blocks(css="style.css") as demo:
|
23 |
-
|
24 |
-
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
# Create Gradio interface
|
40 |
demo.launch(share=True)
|
|
|
1 |
+
import os
|
2 |
+
import zipfile
|
3 |
+
|
4 |
+
# Define the filename
|
5 |
+
zip_filename = 'Images.zip'
|
6 |
+
|
7 |
+
# Get the current directory path
|
8 |
+
current_directory = os.getcwd()
|
9 |
+
print(f"Current directory: {current_directory}")
|
10 |
+
|
11 |
+
# Append a custom string to the current directory path (for demonstration)
|
12 |
+
custom_directory = os.path.join(current_directory, 'UnzippedContent')
|
13 |
+
|
14 |
+
# Ensure the custom directory exists
|
15 |
+
os.makedirs(custom_directory, exist_ok=True)
|
16 |
+
|
17 |
+
# Print the contents of the current directory before unzipping
|
18 |
+
print(f"Contents of current directory before unzipping: {os.listdir(current_directory)}")
|
19 |
+
|
20 |
+
# Check if the zip file exists in the current directory
|
21 |
+
zip_file_path = os.path.join(current_directory, zip_filename)
|
22 |
+
if os.path.isfile(zip_file_path):
|
23 |
+
# Open the zip file
|
24 |
+
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
|
25 |
+
# Extract all contents of the zip file to the custom directory
|
26 |
+
zip_ref.extractall(custom_directory)
|
27 |
+
print(f"'{zip_filename}' has been successfully unzipped to '{custom_directory}'.")
|
28 |
+
|
29 |
+
# Print the contents of the custom directory after unzipping
|
30 |
+
print(f"Contents of '{custom_directory}': {os.listdir(custom_directory)}")
|
31 |
+
else:
|
32 |
+
print(f"'{zip_filename}' not found in the current directory.")
|
33 |
+
|
34 |
+
# Print the contents of the current directory after unzipping
|
35 |
+
print(f"Contents of current directory after unzipping: {os.listdir(current_directory)}")
|
36 |
+
|
37 |
import gradio as gr
|
38 |
import gc
|
39 |
import cv2
|
|
|
47 |
# from main import build_loaders
|
48 |
# from CLIP import CLIPModel
|
49 |
import os
|
|
|
50 |
|
|
|
|
|
51 |
|
|
|
|
|
52 |
|
53 |
+
|
54 |
+
|
55 |
with gr.Blocks(css="style.css") as demo:
|
56 |
+
def get_image_embeddings(valid_df, model_path):
|
57 |
+
tokenizer = DistilBertTokenizer.from_pretrained(CFG.text_tokenizer)
|
58 |
+
valid_loader = build_loaders(valid_df, tokenizer, mode="valid")
|
59 |
|
60 |
+
model = CLIPModel().to(CFG.device)
|
61 |
+
model.load_state_dict(torch.load(model_path, map_location=CFG.device))
|
62 |
+
model.eval()
|
63 |
+
|
64 |
+
valid_image_embeddings = []
|
65 |
+
with torch.no_grad():
|
66 |
+
for batch in tqdm(valid_loader):
|
67 |
+
image_features = model.image_encoder(batch["image"].to(CFG.device))
|
68 |
+
image_embeddings = model.image_projection(image_features)
|
69 |
+
valid_image_embeddings.append(image_embeddings)
|
70 |
+
return model, torch.cat(valid_image_embeddings)
|
71 |
+
|
72 |
+
_, valid_df = make_train_valid_dfs()
|
73 |
+
model, image_embeddings = get_image_embeddings(valid_df, "best.pt")
|
74 |
|
75 |
+
def find_matches(query, n=9):
|
76 |
+
tokenizer = DistilBertTokenizer.from_pretrained(CFG.text_tokenizer)
|
77 |
+
encoded_query = tokenizer([query])
|
78 |
+
batch = {
|
79 |
+
key: torch.tensor(values).to(CFG.device)
|
80 |
+
for key, values in encoded_query.items()
|
81 |
+
}
|
82 |
+
with torch.no_grad():
|
83 |
+
text_features = model.text_encoder(
|
84 |
+
input_ids=batch["input_ids"], attention_mask=batch["attention_mask"]
|
85 |
+
)
|
86 |
+
text_embeddings = model.text_projection(text_features)
|
87 |
+
|
88 |
+
image_embeddings_n = F.normalize(image_embeddings, p=2, dim=-1)
|
89 |
+
text_embeddings_n = F.normalize(text_embeddings, p=2, dim=-1)
|
90 |
+
dot_similarity = text_embeddings_n @ image_embeddings_n.T
|
91 |
+
|
92 |
+
_, indices = torch.topk(dot_similarity.squeeze(0), n * 5)
|
93 |
+
matches = [valid_df['image'].values[idx] for idx in indices[::5]]
|
94 |
+
|
95 |
+
images = []
|
96 |
+
for match in matches:
|
97 |
+
image = cv2.imread(f"{CFG.image_path}/{match}")
|
98 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
99 |
+
# images.append(image)
|
100 |
+
|
101 |
+
return image
|
102 |
+
with gr.Row():
|
103 |
+
textbox = gr.Textbox(label = "Enter a query to find matching images using a CLIP model.")
|
104 |
+
image = gr.Image(type="numpy")
|
105 |
+
|
106 |
+
button = gr.Button("Press")
|
107 |
+
button.click(
|
108 |
+
fn = find_matches,
|
109 |
+
inputs=textbox,
|
110 |
+
outputs=image
|
111 |
+
)
|
112 |
|
113 |
# Create Gradio interface
|
114 |
demo.launch(share=True)
|