File size: 1,549 Bytes
5146242 a9f478d 5146242 800403d 5146242 a9f478d 5146242 a9f478d e24f028 5146242 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import gradio as gr
import tensorflow as tf
from tensorflow.keras.preprocessing import image
import numpy as np
from PIL import Image
from keras import layers
# Load your trained Xception model
model = tf.keras.models.load_model("xception-head")
# Define the labels for your classification
class_labels = ['arm', 'hand', 'foot', 'legs','fullbody','head','backside', 'torso', 'stake', 'plastic'] # Replace with your actual class names
def classify_image(img):
# Preprocess the image to fit the model input shape
img = img.resize((299, 299)) # Xception takes 299x299 input size
img = np.array(img) / 255.0 # Normalize the image
img = np.expand_dims(img, axis=0)
# Make prediction
predictions = model.predict(img)
predicted_class = np.argmax(predictions, axis=1)[0]
confidence = np.max(predictions)
return {class_labels[i]: float(predictions[0][i]) for i in range(len(class_labels))}, confidence
# Example images (local paths or URLs)
#example_images = [
#'examples/fresh.jpg', # Replace with actual local file paths or URLs
#]
# Gradio interface
demo = gr.Interface(
fn=classify_image,
title="Human Bodypart Image Classification",
description = "Predict the bodypart of huma. This is a demo of our human bodypart image <a href=\"https://huggingface.co/icputrd/Inception-V3-Human-Bodypart-Classifier\">classifier</a>.",
inputs=gr.Image(type="pil"),
outputs=[gr.Label(num_top_classes=len(class_labels)), gr.Number()],
live=True,
)
if __name__ == "__main__":
demo.launch()
|