Create app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
from tensorflow.keras.preprocessing import image
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load your trained Xception model
|
7 |
+
model = tf.keras.models.load_model("your-huggingface-username/your-model-name")
|
8 |
+
|
9 |
+
def classify_image(img):
|
10 |
+
# Preprocess the image
|
11 |
+
img = img.resize((299, 299)) # Resize to the input shape of Xception
|
12 |
+
img_array = image.img_to_array(img) # Convert image to array
|
13 |
+
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
14 |
+
img_array /= 255.0 # Normalize the image
|
15 |
+
|
16 |
+
# Make prediction
|
17 |
+
predictions = model.predict(img_array)
|
18 |
+
predicted_class = np.argmax(predictions, axis=-1)[0] # Get the predicted class index
|
19 |
+
|
20 |
+
return str(predicted_class) # Return the class index as a string
|
21 |
+
|
22 |
+
# Set up Gradio interface
|
23 |
+
iface = gr.Interface(fn=classify_image, inputs=gr.inputs.Image(type="pil"), outputs="text")
|
24 |
+
|
25 |
+
iface.launch()
|