Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from transformers import pipeline | |
from scipy.io.wavfile import write as write_wav | |
AUDIO_FILE_PATH = "bark_generation.wav" | |
synthesizer = pipeline("text-to-speech", "suno/bark-small") | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot(type="messages") | |
audio_box = gr.Audio(autoplay=True) | |
msg = gr.Textbox(submit_btn=True) | |
clear = gr.Button("Clear") | |
def synthesize_audio(text): | |
speech = synthesizer(text, forward_params={"do_sample": True}) | |
write_wav(AUDIO_FILE_PATH, rate=speech["sampling_rate"], data=speech["audio"]) | |
def user(user_message, history: list): | |
return "", history + [{"role": "user", "content": user_message}] | |
def bot(history: list): | |
history.append({"role": "assistant", "content": ""}) | |
for message in client.chat_completion( | |
history, | |
stream=True, | |
): | |
token = message.choices[0].delta.content | |
history[-1]["content"] += token | |
yield history, None | |
synthesize_audio(history[-1]["content"]) | |
return history, AUDIO_FILE_PATH | |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
bot, chatbot, [chatbot, audio_box] | |
) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
if __name__ == "__main__": | |
demo.launch() | |