id2223-lab2 / app.py
EPark25's picture
unreliably working
1e937ce
import gradio as gr
import torch
from huggingface_hub import InferenceClient
from transformers import BarkModel
from transformers import AutoProcessor
model = BarkModel.from_pretrained("suno/bark-small")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model = model.to(device)
processor = AutoProcessor.from_pretrained("suno/bark")
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
with gr.Blocks() as demo:
chatbot = gr.Chatbot(type="messages")
audio_box = gr.Audio(autoplay=True)
msg = gr.Textbox(submit_btn=True)
clear = gr.Button("Clear")
def user(user_message, history: list):
return "", history + [{"role": "user", "content": user_message}]
def bot(history: list):
history.append({"role": "assistant", "content": ""})
for message in client.chat_completion(
history,
stream=True,
):
token = message.choices[0].delta.content
history[-1]["content"] += token
yield history
return history
def read(history: list):
text = history[-1]["content"]
inputs = processor(text=text, return_tensors="pt").to(device)
speech = model.generate(**inputs.to(device))
sampling_rate = model.generation_config.sample_rate
return tuple((sampling_rate, speech.cpu().numpy().squeeze()))
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, chatbot
).then(read, chatbot, audio_box)
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch()