import gradio as gr from peft import PeftModel, PeftTokenizer from transformers import TextStreamer # Load model directly from transformers import AutoModel, AutoTokenizer """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference Info of how to use a model after training on hf https://huggingface.co/docs/trl/main/en/use_model """ model_name_or_path = "unsloth/Llama-3.2-3B-Instruct" adapter_name = "samlama111/lora_model" model = AutoModel.from_pretrained(model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = PeftModel.from_pretrained(model, adapter_name) tokenizer = PeftTokenizer.from_pretrained(tokenizer, adapter_name) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" inputs = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt" ) text_streamer = TextStreamer(tokenizer) # TODO: Doesn't stream ATM for message in model.generate( input_ids=inputs, streamer=text_streamer, max_new_tokens=1024, use_cache=True ): # Decode the tensor to a string decoded_message = tokenizer.decode(message, skip_special_tokens=True) # Manually getting the response response = decoded_message.split("assistant")[ -1 ].strip() # Extract only the assistant's response print(response) yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()