import sys
sys.path.append('./')

from typing import Tuple

import os
import json
import cv2
import math
import torch
import random
import numpy as np
import argparse
import pandas as pd

import PIL
from PIL import Image

import diffusers
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
from diffusers import LCMScheduler

from huggingface_hub import hf_hub_download

import insightface
from insightface.app import FaceAnalysis

from style_template import styles
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline
from model_util import load_models_xl, get_torch_device, torch_gc

import os

# try:
#     # Send a GET request to the URL
#     response = requests.get("https://storage.googleapis.com/idfy-gff-public/idfy-gff-public%40idfy-eve-ml-training.iam.gserviceaccount.com.json")

#     # Raise an exception if the request was unsuccessful
#     response.raise_for_status()

#     # Save the file to the specified path
#     with open("serviceaccount.json", 'wb') as file:
#         file.write(response.content)

#     print(f"Service account JSON file successfully downloaded")
# os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = os.getenv('GOOGLE_APPLICATION_CREDENTIALS')

service_account_json = os.getenv("GOOGLE_APPLICATION_CREDENTIALS")

if not service_account_json:
    raise ValueError("The GCP_SERVICE_ACCOUNT secret is not set!")

# Write the JSON content to a temporary file
temp_credentials_path = "/tmp/service_account.json"

with open(temp_credentials_path, "w") as temp_file:
    temp_file.write(service_account_json)

# Set the GOOGLE_APPLICATION_CREDENTIALS environment variable
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = temp_credentials_path
# os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "serviceaccount.json"

# except requests.exceptions.RequestException as e:
#     print(f"Failed to download the service account JSON file: {e}")



# global variable
MAX_SEED = np.iinfo(np.int32).max
device = get_torch_device()
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Watercolor"

# Load face encoder
app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))

# Path to InstantID models
face_adapter = f'./checkpoints/ip-adapter.bin'
controlnet_path = f'./checkpoints/ControlNetModel'

# Load pipeline
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=dtype)

logo = Image.open("./gradio_demo/watermark.png")
logo = logo.resize((100, 100))

from cv2 import imencode
import base64

import gradio as gr
from google.cloud import storage
from io import BytesIO


def main(pretrained_model_name_or_path="wangqixun/YamerMIX_v8", enable_lcm_arg=False):

    if pretrained_model_name_or_path.endswith(
            ".ckpt"
        ) or pretrained_model_name_or_path.endswith(".safetensors"):
            scheduler_kwargs = hf_hub_download(
                repo_id="wangqixun/YamerMIX_v8",
                subfolder="scheduler",
                filename="scheduler_config.json",
            )

            (tokenizers, text_encoders, unet, _, vae) = load_models_xl(
                pretrained_model_name_or_path=pretrained_model_name_or_path,
                scheduler_name=None,
                weight_dtype=dtype,
            )

            scheduler = diffusers.EulerDiscreteScheduler.from_config(scheduler_kwargs)
            pipe = StableDiffusionXLInstantIDPipeline(
                vae=vae,
                text_encoder=text_encoders[0],
                text_encoder_2=text_encoders[1],
                tokenizer=tokenizers[0],
                tokenizer_2=tokenizers[1],
                unet=unet,
                scheduler=scheduler,
                controlnet=controlnet,
            ).to(device)

    else:
        pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
            pretrained_model_name_or_path,
            controlnet=controlnet,
            torch_dtype=dtype,
            safety_checker=None,
            feature_extractor=None,
        ).to(device)

        pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config)

    pipe.load_ip_adapter_instantid(face_adapter)
    # load and disable LCM
    pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
    pipe.disable_lora()
    
    def remove_tips():
        return gr.update(visible=False)

    def convert_from_cv2_to_image(img: np.ndarray) -> Image:
        return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))

    def convert_from_image_to_cv2(img: Image) -> np.ndarray:
        return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)

    def run_for_prompts1(face_file,style,progress=gr.Progress(track_tqdm=True)):
        # if email != "":
        p,n = styles.get(style, styles.get(STYLE_NAMES[1]))
        return generate_image(face_file, p[0], n)
        # else:
            # raise gr.Error("Email ID is compulsory")
    def run_for_prompts2(face_file,style,progress=gr.Progress(track_tqdm=True)):
        # if email != "":
        p,n = styles.get(style, styles.get(STYLE_NAMES[1]))
        return generate_image(face_file, p[1], n)
    def run_for_prompts3(face_file,style,progress=gr.Progress(track_tqdm=True)):
        # if email != "":
        p,n = styles.get(style, styles.get(STYLE_NAMES[1]))
        return generate_image(face_file, p[2], n)
    def run_for_prompts4(face_file,style,progress=gr.Progress(track_tqdm=True)):
        # if email != "":
        p,n = styles.get(style, styles.get(STYLE_NAMES[1]))
        return generate_image(face_file, p[3], n)
        
    def upload_pil_image_to_gcs(image, destination_blob_name):
        bucket_name="idfy-gff-public"
        # Convert PIL image to byte stream
        image_byte_array = BytesIO()
        image.save(image_byte_array, format='PNG')  # Save image in its original format
        image_byte_array.seek(0)

        # Initialize a GCP client
        storage_client = storage.Client()

        # Get the bucket
        bucket = storage_client.bucket(bucket_name)

        # Create a blob object from the filename
        blob = bucket.blob(destination_blob_name)

        # Upload the image to GCS
        blob.upload_from_file(image_byte_array, content_type=f'image/png')

    def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
        stickwidth = 4
        limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
        kps = np.array(kps)

        w, h = image_pil.size
        out_img = np.zeros([h, w, 3])

        for i in range(len(limbSeq)):
            index = limbSeq[i]
            color = color_list[index[0]]

            x = kps[index][:, 0]
            y = kps[index][:, 1]
            length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
            angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
            polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
            out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
        out_img = (out_img * 0.6).astype(np.uint8)

        for idx_kp, kp in enumerate(kps):
            color = color_list[idx_kp]
            x, y = kp
            out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)

        out_img_pil = Image.fromarray(out_img.astype(np.uint8))
        return out_img_pil

    def resize_img(input_image, max_side=1280, min_side=1280, size=None, 
                pad_to_max_side=True, mode=PIL.Image.BILINEAR, base_pixel_number=64):

            w, h = input_image.size
            if size is not None:
                w_resize_new, h_resize_new = size
            else:
                ratio = min_side / min(h, w)
                w, h = round(ratio*w), round(ratio*h)
                ratio = max_side / max(h, w)
                input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
                w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
                h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
            input_image = input_image.resize([w_resize_new, h_resize_new], mode)

            if pad_to_max_side:
                res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
                offset_x = (max_side - w_resize_new) // 2
                offset_y = (max_side - h_resize_new) // 2
                res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
                input_image = Image.fromarray(res)
            return input_image

    # def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
    #     p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    #     return p.replace("{prompt}", positive), n + ' ' + negative
    
    def store_images(email, gallery1, gallery2, gallery3, gallery4,consent,style):
        if not email:
            raise gr.Error("Email Id not provided")
        if not consent:
            raise gr.Error("Consent not provided")
        for i, img in enumerate([gallery1, gallery2, gallery3, gallery4], start=1):
            try:
                if isinstance(img, np.ndarray):
                    img = Image.fromarray(img)
                dest = f'{email}/img{i}@{style}.png'
                upload_pil_image_to_gcs(img,dest)
            except Exception as e:
                print(e)
        gr.Info("Thankyou!! Your avatar is on the way to your inbox")
        return None,None,None,None,None
    
    def add_watermark(image, watermark=logo, opacity=128, position="bottom_right", padding=10):
        # Convert NumPy array to PIL Image if needed
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)

        if isinstance(watermark, np.ndarray):
            watermark = Image.fromarray(watermark)

        # Convert images to 'RGBA' mode to handle transparency
        image = image.convert("RGBA")
        watermark = watermark.convert("RGBA")

        # Adjust the watermark opacity
        watermark = watermark.copy()
        watermark.putalpha(opacity)

        # Calculate the position for the watermark
        if position == "bottom_right":
            x = image.width - watermark.width - padding
            y = image.height - watermark.height - padding
        elif position == "bottom_left":
            x = padding
            y = image.height - watermark.height - padding
        elif position == "top_right":
            x = image.width - watermark.width - padding
            y = padding
        elif position == "top_left":
            x = padding
            y = padding
        else:
            raise ValueError("Unsupported position. Choose from 'bottom_right', 'bottom_left', 'top_right', 'top_left'.")

        # Paste the watermark onto the image
        image.paste(watermark, (x, y), watermark)

        # Convert back to 'RGB' if the original image was not 'RGBA'
        if image.mode != "RGBA":
            image = image.convert("RGB")

        # return resize_img(image)
        return image

    def generate_image(face_image,prompt,negative_prompt):
        pose_image_path = None
        # prompt = "superman"
        enable_LCM = False
        identitynet_strength_ratio = 0.90
        adapter_strength_ratio = 0.60
        num_steps = 15
        guidance_scale = 5
        seed = random.randint(0, MAX_SEED)
        enhance_face_region = True
        if enable_LCM:
            pipe.enable_lora()
            pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
        else:
            pipe.disable_lora()
            pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config)
    
        if face_image is None:
            raise gr.Error(f"Cannot find any input face image! Please upload the face image")
        face_image = resize_img(face_image)
        face_image_cv2 = convert_from_image_to_cv2(face_image)
        height, width, _ = face_image_cv2.shape
        
        # Extract face features
        face_info = app.get(face_image_cv2)
        
        if len(face_info) == 0:
            raise gr.Error(f"Cannot find any face in the image! Please upload another person image")
        
        face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1]  # only use the maximum face
        face_emb = face_info['embedding']
        face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info['kps'])
        
        if pose_image_path is not None:
            pose_image = load_image(pose_image_path)
            pose_image = resize_img(pose_image)
            pose_image_cv2 = convert_from_image_to_cv2(pose_image)
            
            face_info = app.get(pose_image_cv2)
            
            if len(face_info) == 0:
                raise gr.Error(f"Cannot find any face in the reference image! Please upload another person image")
            
            face_info = face_info[-1]
            face_kps = draw_kps(pose_image, face_info['kps'])
            
            width, height = face_kps.size

        if enhance_face_region:
            control_mask = np.zeros([height, width, 3])
            x1, y1, x2, y2 = face_info["bbox"]
            x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
            control_mask[y1:y2, x1:x2] = 255
            control_mask = Image.fromarray(control_mask.astype(np.uint8))
        else:
            control_mask = None
                        
        generator = torch.Generator(device=device).manual_seed(seed)
        
        pipe.set_ip_adapter_scale(adapter_strength_ratio)
        images = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            image_embeds=face_emb,
            image=face_kps,
            control_mask=control_mask,
            controlnet_conditioning_scale=float(identitynet_strength_ratio),
            num_inference_steps=num_steps,
            guidance_scale=guidance_scale,
            height=height,
            width=width,
            generator=generator,
            # num_images_per_prompt = 4
        ).images
        
        watermarked_image = add_watermark(images[0])

        # return images[0]
        return watermarked_image

    ### Description
    title = r"""
    <h1 align="center" style="color:white;">Choose your AVATAR</h1>
    """

    description = r"""
    <h2 style="color:white;"> Powered by IDfy </h2>"""

    article = r""""""

    tips = r""""""
    css = '''
    .gradio-container {width: 100% !important; color: white; background: linear-gradient(135deg, #1C43B9, #254977, #343434);} 
    .gradio-row .gradio-element { margin: 0 !important; }
    .centered-column {
    display: flex;
    justify-content: center;
    align-items: center;
    width: 100%;}
    #submit-btn, #store-btn {
    background: linear-gradient(to right, #ffffff, #f2bb13); !important;
    color: #254977 !important;
    }
    '''
    with gr.Blocks(css=css) as demo:

    # description
        gr.Markdown(title)
        with gr.Column():
            with gr.Row():
                gr.Image("./gradio_demo/logo.png", scale=0, min_width=50, show_label=False, show_download_button=False, show_share_button=False)
                gr.Markdown(description)
            style = gr.Dropdown(label="Choose your STYLE", choices=STYLE_NAMES)
            with gr.Row(equal_height=True):  # Center the face file
                with gr.Column(elem_id="centered-face", elem_classes=["centered-column"]):  # Use CSS class for centering
                    face_file = gr.Image(label="Upload a photo of your face", type="pil", height=400, width=500)
            submit = gr.Button("Submit", variant="primary",elem_id="submit-btn")
            with gr.Column():
                with gr.Row():
                    gallery1 = gr.Image(label="Generated Images", interactive=False, height=640, width=640)
                    gallery2 = gr.Image(label="Generated Images", interactive=False, height=640, width=640)
                with gr.Row():
                    gallery3 = gr.Image(label="Generated Images", interactive=False, height=640, width=640)
                    gallery4 = gr.Image(label="Generated Images", interactive=False, height=640, width=640)
            email = gr.Textbox(label="Email", info="Enter your email address", value="")
            consent = gr.Checkbox(label="I am giving my consent to use my data to share my AI Avtar and IDfy relevant information from time to time", value=True)
            submit1 = gr.Button("SUBMIT", variant = "primary", elem_id="store-btn")
            usage_tips = gr.Markdown(label="Usage tips of InstantID", value=tips ,visible=False)
                
            face_file.upload(
                fn=remove_tips,
                outputs=usage_tips,
                queue=True,
                api_name=False,
                show_progress = "full"
            ).then(
                fn=run_for_prompts1,
                inputs=[face_file,style],
                outputs=[gallery1]
            ).then(
                fn=run_for_prompts2,
                inputs=[face_file,style],
                outputs=[gallery2]
            ).then(
                fn=run_for_prompts3,
                inputs=[face_file,style],
                outputs=[gallery3]
            ).then(
                fn=run_for_prompts4,
                inputs=[face_file,style],
                outputs=[gallery4]
            )
            submit.click(
                fn=remove_tips,
                outputs=usage_tips,
                queue=True,
                api_name=False,
                show_progress = "full"
            ).then(
                fn=run_for_prompts1,
                inputs=[face_file,style],
                outputs=[gallery1]
            ).then(
                fn=run_for_prompts2,
                inputs=[face_file,style],
                outputs=[gallery2]
            ).then(
                fn=run_for_prompts3,
                inputs=[face_file,style],
                outputs=[gallery3]
            ).then(
                fn=run_for_prompts4,
                inputs=[face_file,style],
                outputs=[gallery4]
            )
            
            submit1.click(
                fn=store_images,
                inputs=[email,gallery1,gallery2,gallery3,gallery4,consent,style],
                outputs=[face_file,gallery1,gallery2,gallery3,gallery4])
            
        
        
        gr.Markdown(article)

    demo.launch(share=True)
if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--pretrained_model_name_or_path", type=str, default="wangqixun/YamerMIX_v8")
    args = parser.parse_args()

    main(args.pretrained_model_name_or_path, False)