|
import torch
|
|
|
|
class PerplexityEvaluator(object):
|
|
def __init__(self, model, tokenizer, ignore_index=-1):
|
|
self.model = model
|
|
self.tokenizer = tokenizer
|
|
self.ignore_index = ignore_index
|
|
|
|
def __call__(self, text, context=None):
|
|
return self.log_perplexity(text, context)
|
|
|
|
def log_perplexity(self, text, context=None):
|
|
"""
|
|
Evaluate log perplexity of text with respect to the language model
|
|
based on the context
|
|
|
|
:param text:
|
|
:param context:
|
|
:return:
|
|
"""
|
|
device = self.model.device
|
|
text_ids = self.tokenizer(text, return_tensors='pt')
|
|
if context:
|
|
context_ids = self.tokenizer(context, return_tensors='pt')
|
|
input_ids = torch.concatenate([context_ids['input_ids'], text_ids['input_ids']], axis=1)
|
|
labels = torch.concatenate([torch.ones_like(context_ids['input_ids']) * self.ignore_index,
|
|
text_ids['input_ids']], axis=1)
|
|
print("Warning, need to remove context length when reporting lppx")
|
|
else:
|
|
input_ids = text_ids['input_ids']
|
|
labels = input_ids
|
|
|
|
loss = self.model(input_ids=input_ids.to(device), labels=labels.to(device)).loss
|
|
return loss.cpu().detach().numpy() |