Update human_text_detect.py
Browse files- human_text_detect.py +5 -22
human_text_detect.py
CHANGED
@@ -6,7 +6,7 @@ import numpy as np
|
|
6 |
import pickle
|
7 |
from src.DetectLM import DetectLM
|
8 |
from src.PerplexityEvaluator import PerplexityEvaluator
|
9 |
-
from src.PrepareArticles import PrepareArticles
|
10 |
from src.fit_survival_function import fit_per_length_survival_function
|
11 |
from glob import glob
|
12 |
import spacy
|
@@ -96,16 +96,7 @@ def detect_human_text(model_name, topic, text):
|
|
96 |
min_tokens_per_sentence = 10
|
97 |
max_tokens_per_sentence = 100
|
98 |
|
99 |
-
|
100 |
-
cache_dir = "/cache/huggingface"
|
101 |
-
# Check if the directory exists and is writable
|
102 |
-
print(f"Cache directory exists: {os.path.exists(cache_dir)}")
|
103 |
-
print(f"Cache directory is writable: {os.access(cache_dir, os.W_OK)}")
|
104 |
-
|
105 |
-
# List contents of the directory
|
106 |
-
print("Contents of cache directory before loading model:")
|
107 |
-
os.system(f"ls -lah {cache_dir}")
|
108 |
-
###
|
109 |
|
110 |
# Init model
|
111 |
print('Init model')
|
@@ -114,17 +105,9 @@ def detect_human_text(model_name, topic, text):
|
|
114 |
tokenizer = AutoTokenizer.from_pretrained(lm_name, cache_dir=cache_dir)
|
115 |
model = AutoModelForCausalLM.from_pretrained(lm_name, cache_dir=cache_dir)
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
print(f"Current HF_HOME: {os.getenv('HF_HOME')}")
|
122 |
-
print(f"Current TRANSFORMERS_CACHE: {os.getenv('TRANSFORMERS_CACHE')}")
|
123 |
-
|
124 |
-
# Check where the tokenizer and model are actually downloaded
|
125 |
-
print(f"Tokenizer saved at: {tokenizer.save_pretrained(cache_dir)}")
|
126 |
-
print(f"Model saved at: {model.save_pretrained(cache_dir)}")
|
127 |
-
###
|
128 |
|
129 |
print('Init PerplexityEvaluator')
|
130 |
sentence_detector = PerplexityEvaluator(model, tokenizer)
|
|
|
6 |
import pickle
|
7 |
from src.DetectLM import DetectLM
|
8 |
from src.PerplexityEvaluator import PerplexityEvaluator
|
9 |
+
from src.PrepareArticles import PrepareArticles
|
10 |
from src.fit_survival_function import fit_per_length_survival_function
|
11 |
from glob import glob
|
12 |
import spacy
|
|
|
96 |
min_tokens_per_sentence = 10
|
97 |
max_tokens_per_sentence = 100
|
98 |
|
99 |
+
cache_dir = f"/cache/huggingface/{model_name}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
# Init model
|
102 |
print('Init model')
|
|
|
105 |
tokenizer = AutoTokenizer.from_pretrained(lm_name, cache_dir=cache_dir)
|
106 |
model = AutoModelForCausalLM.from_pretrained(lm_name, cache_dir=cache_dir)
|
107 |
|
108 |
+
print("Save model")
|
109 |
+
tokenizer.save_pretrained(cache_dir)
|
110 |
+
model.save_pretrained(cache_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
print('Init PerplexityEvaluator')
|
113 |
sentence_detector = PerplexityEvaluator(model, tokenizer)
|