Update human_text_detect.py
Browse files- human_text_detect.py +6 -17
human_text_detect.py
CHANGED
@@ -87,7 +87,7 @@ def detect_human_text(model_name, topic, text):
|
|
87 |
df_null = df_null[df_null.num > 1]
|
88 |
|
89 |
# Get survival function
|
90 |
-
|
91 |
pval_functions = get_survival_function(df_null, G=43)
|
92 |
|
93 |
min_tokens_per_sentence = 10
|
@@ -95,30 +95,19 @@ def detect_human_text(model_name, topic, text):
|
|
95 |
|
96 |
cache_dir = f"/tmp/cacheHuggingface/{model_name}"
|
97 |
|
98 |
-
print('Create dir')
|
99 |
-
# Use a writable directory inside the Hugging Face Space
|
100 |
-
# os.makedirs("/tmp/cacheHuggingface/PHI2", exist_ok=True)
|
101 |
-
# os.makedirs("/tmp/cacheHuggingface/GPT2XL", exist_ok=True)
|
102 |
-
|
103 |
# Init model
|
104 |
print('Init tokenizer')
|
105 |
lm_name = 'gpt2-xl' if model_name == 'GPT2XL' else 'microsoft/phi-2'
|
106 |
tokenizer = AutoTokenizer.from_pretrained(lm_name, cache_dir=cache_dir)
|
107 |
-
|
108 |
-
print("Before saved tokenizer files in:", cache_dir)
|
109 |
-
print(os.listdir(cache_dir))
|
110 |
|
111 |
-
print("Save tokenizer")
|
112 |
-
tokenizer.save_pretrained(cache_dir)
|
113 |
-
|
114 |
-
print("Checking saved tokenizer files in:", cache_dir)
|
115 |
-
print(os.listdir(cache_dir))
|
116 |
|
117 |
print('Init model')
|
118 |
-
model = AutoModelForCausalLM.from_pretrained(lm_name
|
119 |
|
120 |
-
print("Save model")
|
121 |
-
model.save_pretrained(cache_dir)
|
122 |
|
123 |
print('Init PerplexityEvaluator')
|
124 |
sentence_detector = PerplexityEvaluator(model, tokenizer)
|
|
|
87 |
df_null = df_null[df_null.num > 1]
|
88 |
|
89 |
# Get survival function
|
90 |
+
print('Get survival function')
|
91 |
pval_functions = get_survival_function(df_null, G=43)
|
92 |
|
93 |
min_tokens_per_sentence = 10
|
|
|
95 |
|
96 |
cache_dir = f"/tmp/cacheHuggingface/{model_name}"
|
97 |
|
|
|
|
|
|
|
|
|
|
|
98 |
# Init model
|
99 |
print('Init tokenizer')
|
100 |
lm_name = 'gpt2-xl' if model_name == 'GPT2XL' else 'microsoft/phi-2'
|
101 |
tokenizer = AutoTokenizer.from_pretrained(lm_name, cache_dir=cache_dir)
|
|
|
|
|
|
|
102 |
|
103 |
+
# print("Save tokenizer")
|
104 |
+
# tokenizer.save_pretrained(cache_dir)
|
|
|
|
|
|
|
105 |
|
106 |
print('Init model')
|
107 |
+
model = AutoModelForCausalLM.from_pretrained(lm_name, cache_dir=cache_dir)
|
108 |
|
109 |
+
# print("Save model")
|
110 |
+
# model.save_pretrained(cache_dir)
|
111 |
|
112 |
print('Init PerplexityEvaluator')
|
113 |
sentence_detector = PerplexityEvaluator(model, tokenizer)
|