File size: 25,810 Bytes
421645e 7e565cb 421645e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
# -*- coding: utf-8 -*-
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
# Natural Language Toolkit: BLEU Score
#
# Copyright (C) 2001-2020 NLTK Project
# Authors: Chin Yee Lee, Hengfeng Li, Ruxin Hou, Calvin Tanujaya Lim
# Contributors: Björn Mattsson, Dmitrijs Milajevs, Liling Tan
# URL: <http://nltk.org/>
# For license information, see LICENSE.TXT
"""BLEU score implementation."""
import math
import sys
from fractions import Fraction
import warnings
from collections import Counter
from .utils import ngrams
import pdb
def sentence_bleu(
references,
hypothesis,
weights=(0.25, 0.25, 0.25, 0.25),
smoothing_function=None,
auto_reweigh=False,
):
"""
Calculate BLEU score (Bilingual Evaluation Understudy) from
Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002.
"BLEU: a method for automatic evaluation of machine translation."
In Proceedings of ACL. http://www.aclweb.org/anthology/P02-1040.pdf
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'military', 'always',
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
>>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops',
... 'forever', 'hearing', 'the', 'activity', 'guidebook',
... 'that', 'party', 'direct']
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'military', 'will', 'forever',
... 'heed', 'Party', 'commands']
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'military', 'forces', 'always',
... 'being', 'under', 'the', 'command', 'of', 'the',
... 'Party']
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'army', 'always', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'party']
>>> sentence_bleu([reference1, reference2, reference3], hypothesis1) # doctest: +ELLIPSIS
0.5045...
If there is no ngrams overlap for any order of n-grams, BLEU returns the
value 0. This is because the precision for the order of n-grams without
overlap is 0, and the geometric mean in the final BLEU score computation
multiplies the 0 with the precision of other n-grams. This results in 0
(independently of the precision of the othe n-gram orders). The following
example has zero 3-gram and 4-gram overlaps:
>>> round(sentence_bleu([reference1, reference2, reference3], hypothesis2),4) # doctest: +ELLIPSIS
0.0
To avoid this harsh behaviour when no ngram overlaps are found a smoothing
function can be used.
>>> chencherry = SmoothingFunction()
>>> sentence_bleu([reference1, reference2, reference3], hypothesis2,
... smoothing_function=chencherry.method1) # doctest: +ELLIPSIS
0.0370...
The default BLEU calculates a score for up to 4-grams using uniform
weights (this is called BLEU-4). To evaluate your translations with
higher/lower order ngrams, use customized weights. E.g. when accounting
for up to 5-grams with uniform weights (this is called BLEU-5) use:
>>> weights = (1./5., 1./5., 1./5., 1./5., 1./5.)
>>> sentence_bleu([reference1, reference2, reference3], hypothesis1, weights) # doctest: +ELLIPSIS
0.3920...
:param references: reference sentences
:type references: list(list(str))
:param hypothesis: a hypothesis sentence
:type hypothesis: list(str)
:param weights: weights for unigrams, bigrams, trigrams and so on
:type weights: list(float)
:param smoothing_function:
:type smoothing_function: SmoothingFunction
:param auto_reweigh: Option to re-normalize the weights uniformly.
:type auto_reweigh: bool
:return: The sentence-level BLEU score.
:rtype: float
"""
return corpus_bleu(
[references], [hypothesis], weights, smoothing_function, auto_reweigh
)
def corpus_bleu(
list_of_references,
hypotheses,
weights=(0.25, 0.25, 0.25, 0.25),
smoothing_function=None,
auto_reweigh=False,
):
"""
Calculate a single corpus-level BLEU score (aka. system-level BLEU) for all
the hypotheses and their respective references.
Instead of averaging the sentence level BLEU scores (i.e. marco-average
precision), the original BLEU metric (Papineni et al. 2002) accounts for
the micro-average precision (i.e. summing the numerators and denominators
for each hypothesis-reference(s) pairs before the division).
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'military', 'always',
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
>>> ref1a = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'military', 'will', 'forever',
... 'heed', 'Party', 'commands']
>>> ref1b = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'military', 'forces', 'always',
... 'being', 'under', 'the', 'command', 'of', 'the', 'Party']
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'army', 'always', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'party']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> corpus_bleu(list_of_references, hypotheses) # doctest: +ELLIPSIS
0.5920...
The example below show that corpus_bleu() is different from averaging
sentence_bleu() for hypotheses
>>> score1 = sentence_bleu([ref1a, ref1b, ref1c], hyp1)
>>> score2 = sentence_bleu([ref2a], hyp2)
>>> (score1 + score2) / 2 # doctest: +ELLIPSIS
0.6223...
:param list_of_references: a corpus of lists of reference sentences, w.r.t. hypotheses
:type list_of_references: list(list(list(str)))
:param hypotheses: a list of hypothesis sentences
:type hypotheses: list(list(str))
:param weights: weights for unigrams, bigrams, trigrams and so on
:type weights: list(float)
:param smoothing_function:
:type smoothing_function: SmoothingFunction
:param auto_reweigh: Option to re-normalize the weights uniformly.
:type auto_reweigh: bool
:return: The corpus-level BLEU score.
:rtype: float
"""
# Before proceeding to compute BLEU, perform sanity checks.
p_numerators = Counter() # Key = ngram order, and value = no. of ngram matches.
p_denominators = Counter() # Key = ngram order, and value = no. of ngram in ref.
hyp_lengths, ref_lengths = 0, 0
assert len(list_of_references) == len(hypotheses), (
"The number of hypotheses and their reference(s) should be the " "same "
)
# Iterate through each hypothesis and their corresponding references.
for references, hypothesis in zip(list_of_references, hypotheses):
# For each order of ngram, calculate the numerator and
# denominator for the corpus-level modified precision.
for i, _ in enumerate(weights, start=1):
p_i_numeraotr, p_i_denominator = modified_recall(references, hypothesis, i)
p_numerators[i] += p_i_numeraotr
p_denominators[i] += p_i_denominator
# Calculate the hypothesis length and the closest reference length.
# Adds them to the corpus-level hypothesis and reference counts.
hyp_len = len(hypothesis)
hyp_lengths += hyp_len
ref_lengths += closest_ref_length(references, hyp_len)
# Calculate corpus-level brevity penalty.
bp = brevity_penalty(ref_lengths, hyp_lengths)
# Uniformly re-weighting based on maximum hypothesis lengths if largest
# order of n-grams < 4 and weights is set at default.
if auto_reweigh:
if hyp_lengths < 4 and weights == (0.25, 0.25, 0.25, 0.25):
weights = (1 / hyp_lengths,) * hyp_lengths
# Collects the various recall values for the different ngram orders.
p_n = [
(p_numerators[i], p_denominators[i])
for i, _ in enumerate(weights, start=1)
]
# Returns 0 if there's no matching n-grams
# We only need to check for p_numerators[1] == 0, since if there's
# no unigrams, there won't be any higher order ngrams.
if p_numerators[1] == 0:
return 0
# If there's no smoothing, set use method0 from SmoothinFunction class.
if not smoothing_function:
smoothing_function = SmoothingFunction().method1
# Smoothen the modified precision.
# Note: smoothing_function() may convert values into floats;
# it tries to retain the Fraction object as much as the
# smoothing method allows.
p_n = smoothing_function(
p_n, references=references, hypothesis=hypothesis, hyp_len=hyp_lengths
)
# pdb.set_trace()
s = (w_i * math.log(p_i[0]/p_i[1]) for w_i, p_i in zip(weights, p_n))
s = bp * math.exp(math.fsum(s))
return s
def modified_recall(references, hypothesis, n):
"""
Calculate modified ngram recall.
:param references: A list of reference translations.
:type references: list(list(str))
:param hypothesis: A hypothesis translation.
:type hypothesis: list(str)
:param n: The ngram order.
:type n: int
:return: BLEU's modified precision for the nth order ngram.
:rtype: Fraction
"""
# Extracts all ngrams in hypothesis
# Set an empty Counter if hypothesis is empty.
# pdb.set_trace()
numerator = 0
denominator = 0
counts = Counter(ngrams(hypothesis, n)) if len(hypothesis) >= n else Counter()
# Extract a union of references' counts.
# max_counts = reduce(or_, [Counter(ngrams(ref, n)) for ref in references])
max_counts = {}
for reference_and_weights in references:
reference = reference_and_weights[0]
weights = reference_and_weights[1]
reference_counts = (
Counter(ngrams(reference, n)) if len(reference) >= n else Counter()
)
# for ngram in reference_counts:
# max_counts[ngram] = max(max_counts.get(ngram, 0), counts[ngram])
clipped_counts = {
ngram: min(count, counts[ngram]) for ngram, count in reference_counts.items()
}
# reweight
if n == 1 and len(weights) == len(reference_counts):
def weighted_sum(weights, counts):
sum_counts = 0
for ngram, count in counts.items():
sum_counts += count * (weights[ngram[0]] if ngram[0] in weights else 1)
return sum_counts
numerator += weighted_sum(weights, clipped_counts)
denominator += max(1, weighted_sum(weights, reference_counts))
else:
numerator += sum(clipped_counts.values())
denominator += max(1, sum(reference_counts.values()))
# # Assigns the intersection between hypothesis and references' counts.
# clipped_counts = {
# ngram: min(count, max_counts[ngram]) for ngram, count in counts.items()
# }
# numerator += sum(clipped_counts.values())
# # Ensures that denominator is minimum 1 to avoid ZeroDivisionError.
# # Usually this happens when the ngram order is > len(reference).
# denominator += max(1, sum(counts.values()))
#return Fraction(numerator, denominator, _normalize=False)
return numerator, denominator
def closest_ref_length(references, hyp_len):
"""
This function finds the reference that is the closest length to the
hypothesis. The closest reference length is referred to as *r* variable
from the brevity penalty formula in Papineni et. al. (2002)
:param references: A list of reference translations.
:type references: list(list(str))
:param hyp_len: The length of the hypothesis.
:type hyp_len: int
:return: The length of the reference that's closest to the hypothesis.
:rtype: int
"""
ref_lens = (len(reference) for reference in references)
closest_ref_len = min(
ref_lens, key=lambda ref_len: (abs(ref_len - hyp_len), ref_len)
)
return closest_ref_len
def brevity_penalty(closest_ref_len, hyp_len):
"""
Calculate brevity penalty.
As the modified n-gram precision still has the problem from the short
length sentence, brevity penalty is used to modify the overall BLEU
score according to length.
An example from the paper. There are three references with length 12, 15
and 17. And a concise hypothesis of the length 12. The brevity penalty is 1.
>>> reference1 = list('aaaaaaaaaaaa') # i.e. ['a'] * 12
>>> reference2 = list('aaaaaaaaaaaaaaa') # i.e. ['a'] * 15
>>> reference3 = list('aaaaaaaaaaaaaaaaa') # i.e. ['a'] * 17
>>> hypothesis = list('aaaaaaaaaaaa') # i.e. ['a'] * 12
>>> references = [reference1, reference2, reference3]
>>> hyp_len = len(hypothesis)
>>> closest_ref_len = closest_ref_length(references, hyp_len)
>>> brevity_penalty(closest_ref_len, hyp_len)
1.0
In case a hypothesis translation is shorter than the references, penalty is
applied.
>>> references = [['a'] * 28, ['a'] * 28]
>>> hypothesis = ['a'] * 12
>>> hyp_len = len(hypothesis)
>>> closest_ref_len = closest_ref_length(references, hyp_len)
>>> brevity_penalty(closest_ref_len, hyp_len)
0.2635971381157267
The length of the closest reference is used to compute the penalty. If the
length of a hypothesis is 12, and the reference lengths are 13 and 2, the
penalty is applied because the hypothesis length (12) is less then the
closest reference length (13).
>>> references = [['a'] * 13, ['a'] * 2]
>>> hypothesis = ['a'] * 12
>>> hyp_len = len(hypothesis)
>>> closest_ref_len = closest_ref_length(references, hyp_len)
>>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS
0.9200...
The brevity penalty doesn't depend on reference order. More importantly,
when two reference sentences are at the same distance, the shortest
reference sentence length is used.
>>> references = [['a'] * 13, ['a'] * 11]
>>> hypothesis = ['a'] * 12
>>> hyp_len = len(hypothesis)
>>> closest_ref_len = closest_ref_length(references, hyp_len)
>>> bp1 = brevity_penalty(closest_ref_len, hyp_len)
>>> hyp_len = len(hypothesis)
>>> closest_ref_len = closest_ref_length(reversed(references), hyp_len)
>>> bp2 = brevity_penalty(closest_ref_len, hyp_len)
>>> bp1 == bp2 == 1
True
A test example from mteval-v13a.pl (starting from the line 705):
>>> references = [['a'] * 11, ['a'] * 8]
>>> hypothesis = ['a'] * 7
>>> hyp_len = len(hypothesis)
>>> closest_ref_len = closest_ref_length(references, hyp_len)
>>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS
0.8668...
>>> references = [['a'] * 11, ['a'] * 8, ['a'] * 6, ['a'] * 7]
>>> hypothesis = ['a'] * 7
>>> hyp_len = len(hypothesis)
>>> closest_ref_len = closest_ref_length(references, hyp_len)
>>> brevity_penalty(closest_ref_len, hyp_len)
1.0
:param hyp_len: The length of the hypothesis for a single sentence OR the
sum of all the hypotheses' lengths for a corpus
:type hyp_len: int
:param closest_ref_len: The length of the closest reference for a single
hypothesis OR the sum of all the closest references for every hypotheses.
:type closest_ref_len: int
:return: BLEU's brevity penalty.
:rtype: float
"""
if hyp_len > closest_ref_len:
return 1
# If hypothesis is empty, brevity penalty = 0 should result in BLEU = 0.0
elif hyp_len == 0:
return 0
else:
return math.exp(1 - closest_ref_len / hyp_len)
class SmoothingFunction:
"""
This is an implementation of the smoothing techniques
for segment-level BLEU scores that was presented in
Boxing Chen and Collin Cherry (2014) A Systematic Comparison of
Smoothing Techniques for Sentence-Level BLEU. In WMT14.
http://acl2014.org/acl2014/W14-33/pdf/W14-3346.pdf
"""
def __init__(self, epsilon=0.1, alpha=5, k=5):
"""
This will initialize the parameters required for the various smoothing
techniques, the default values are set to the numbers used in the
experiments from Chen and Cherry (2014).
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', 'ensures',
... 'that', 'the', 'military', 'always', 'obeys', 'the',
... 'commands', 'of', 'the', 'party']
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', 'ensures',
... 'that', 'the', 'military', 'will', 'forever', 'heed',
... 'Party', 'commands']
>>> chencherry = SmoothingFunction()
>>> print(sentence_bleu([reference1], hypothesis1)) # doctest: +ELLIPSIS
0.4118...
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method0)) # doctest: +ELLIPSIS
0.4118...
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method1)) # doctest: +ELLIPSIS
0.4118...
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method2)) # doctest: +ELLIPSIS
0.4489...
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method3)) # doctest: +ELLIPSIS
0.4118...
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method4)) # doctest: +ELLIPSIS
0.4118...
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method5)) # doctest: +ELLIPSIS
0.4905...
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method6)) # doctest: +ELLIPSIS
0.4135...
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method7)) # doctest: +ELLIPSIS
0.4905...
:param epsilon: the epsilon value use in method 1
:type epsilon: float
:param alpha: the alpha value use in method 6
:type alpha: int
:param k: the k value use in method 4
:type k: int
"""
self.epsilon = epsilon
self.alpha = alpha
self.k = k
def method0(self, p_n, *args, **kwargs):
"""
No smoothing.
"""
p_n_new = []
for i, p_i in enumerate(p_n):
if p_i[0] != 0:
p_n_new.append(p_i)
else:
_msg = str(
"\nThe hypothesis contains 0 counts of {}-gram overlaps.\n"
"Therefore the BLEU score evaluates to 0, independently of\n"
"how many N-gram overlaps of lower order it contains.\n"
"Consider using lower n-gram order or use "
"SmoothingFunction()"
).format(i + 1)
warnings.warn(_msg)
# When numerator==0 where denonminator==0 or !=0, the result
# for the precision score should be equal to 0 or undefined.
# Due to BLEU geometric mean computation in logarithm space,
# we we need to take the return sys.float_info.min such that
# math.log(sys.float_info.min) returns a 0 precision score.
p_n_new.append(sys.float_info.min)
return p_n_new
def method1(self, p_n, *args, **kwargs):
"""
Smoothing method 1: Add *epsilon* counts to precision with 0 counts.
"""
return [
((p_i[0] + self.epsilon), p_i[1])
if p_i[0] == 0
else p_i
for p_i in p_n
]
def method2(self, p_n, *args, **kwargs):
"""
Smoothing method 2: Add 1 to both numerator and denominator from
Chin-Yew Lin and Franz Josef Och (2004) Automatic evaluation of
machine translation quality using longest common subsequence and
skip-bigram statistics. In ACL04.
"""
return [
(p_i[0] + 1, p_i[1] + 1)
for p_i in p_n
]
def method3(self, p_n, *args, **kwargs):
"""
Smoothing method 3: NIST geometric sequence smoothing
The smoothing is computed by taking 1 / ( 2^k ), instead of 0, for each
precision score whose matching n-gram count is null.
k is 1 for the first 'n' value for which the n-gram match count is null/
For example, if the text contains:
- one 2-gram match
- and (consequently) two 1-gram matches
the n-gram count for each individual precision score would be:
- n=1 => prec_count = 2 (two unigrams)
- n=2 => prec_count = 1 (one bigram)
- n=3 => prec_count = 1/2 (no trigram, taking 'smoothed' value of 1 / ( 2^k ), with k=1)
- n=4 => prec_count = 1/4 (no fourgram, taking 'smoothed' value of 1 / ( 2^k ), with k=2)
"""
incvnt = 1 # From the mteval-v13a.pl, it's referred to as k.
for i, p_i in enumerate(p_n):
if p_i.numerator == 0:
p_n[i] = 1 / (2 ** incvnt * p_i.denominator)
incvnt += 1
return p_n
def method4(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
"""
Smoothing method 4:
Shorter translations may have inflated precision values due to having
smaller denominators; therefore, we give them proportionally
smaller smoothed counts. Instead of scaling to 1/(2^k), Chen and Cherry
suggests dividing by 1/ln(len(T)), where T is the length of the translation.
"""
hyp_len = hyp_len if hyp_len else len(hypothesis)
for i, p_i in enumerate(p_n):
if p_i.numerator == 0 and hyp_len != 0:
incvnt = i + 1 * self.k / math.log(
hyp_len
) # Note that this K is different from the K from NIST.
p_n[i] = incvnt / p_i.denominator
return p_n
def method5(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
"""
Smoothing method 5:
The matched counts for similar values of n should be similar. To a
calculate the n-gram matched count, it averages the n−1, n and n+1 gram
matched counts.
"""
hyp_len = hyp_len if hyp_len else len(hypothesis)
m = {}
# Requires an precision value for an addition ngram order.
p_n_plus1 = p_n + [modified_precision(references, hypothesis, 5)]
m[-1] = p_n[0] + 1
for i, p_i in enumerate(p_n):
p_n[i] = (m[i - 1] + p_i + p_n_plus1[i + 1]) / 3
m[i] = p_n[i]
return p_n
def method6(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
"""
Smoothing method 6:
Interpolates the maximum likelihood estimate of the precision *p_n* with
a prior estimate *pi0*. The prior is estimated by assuming that the ratio
between pn and pn−1 will be the same as that between pn−1 and pn−2; from
Gao and He (2013) Training MRF-Based Phrase Translation Models using
Gradient Ascent. In NAACL.
"""
hyp_len = hyp_len if hyp_len else len(hypothesis)
# This smoothing only works when p_1 and p_2 is non-zero.
# Raise an error with an appropriate message when the input is too short
# to use this smoothing technique.
assert p_n[2], "This smoothing method requires non-zero precision for bigrams."
for i, p_i in enumerate(p_n):
if i in [0, 1]: # Skips the first 2 orders of ngrams.
continue
else:
pi0 = 0 if p_n[i - 2] == 0 else p_n[i - 1] ** 2 / p_n[i - 2]
# No. of ngrams in translation that matches the reference.
m = p_i.numerator
# No. of ngrams in translation.
l = sum(1 for _ in ngrams(hypothesis, i + 1))
# Calculates the interpolated precision.
p_n[i] = (m + self.alpha * pi0) / (l + self.alpha)
return p_n
def method7(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
"""
Smoothing method 7:
Interpolates methods 4 and 5.
"""
hyp_len = hyp_len if hyp_len else len(hypothesis)
p_n = self.method4(p_n, references, hypothesis, hyp_len)
p_n = self.method5(p_n, references, hypothesis, hyp_len)
return p_n
|