# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import os from parser import DFG_python,DFG_java,DFG_ruby,DFG_go,DFG_php,DFG_javascript,DFG_csharp from parser import (remove_comments_and_docstrings, tree_to_token_index, index_to_code_token, tree_to_variable_index) from tree_sitter import Language, Parser import pdb dfg_function={ 'python':DFG_python, 'java':DFG_java, 'ruby':DFG_ruby, 'go':DFG_go, 'php':DFG_php, 'javascript':DFG_javascript, 'c_sharp':DFG_csharp, } def calc_dataflow_match(references, candidate, lang): return corpus_dataflow_match([references], [candidate], lang) def corpus_dataflow_match(references, candidates, lang): LANGUAGE = Language(os.path.abspath(os.path.dirname(__file__)) + '/parser/my-languages.so', lang) parser = Parser() parser.set_language(LANGUAGE) parser = [parser,dfg_function[lang]] match_count = 0 total_count = 0 for i in range(len(candidates)): references_sample = references[i] candidate = candidates[i] for reference in references_sample: try: candidate=remove_comments_and_docstrings(candidate,'java') except: pass try: reference=remove_comments_and_docstrings(reference,'java') except: pass cand_dfg = get_data_flow(candidate, parser) ref_dfg = get_data_flow(reference, parser) normalized_cand_dfg = normalize_dataflow(cand_dfg) normalized_ref_dfg = normalize_dataflow(ref_dfg) if len(normalized_ref_dfg) > 0: total_count += len(normalized_ref_dfg) for dataflow in normalized_ref_dfg: if dataflow in normalized_cand_dfg: match_count += 1 normalized_cand_dfg.remove(dataflow) if total_count == 0: print("WARNING: There is no reference data-flows extracted from the whole corpus, and the data-flow match score degenerates to 0. Please consider ignoring this score.") return 0 score = match_count / total_count return score def get_data_flow(code, parser): try: tree = parser[0].parse(bytes(code,'utf8')) root_node = tree.root_node tokens_index=tree_to_token_index(root_node) code=code.split('\n') code_tokens=[index_to_code_token(x,code) for x in tokens_index] index_to_code={} for idx,(index,code) in enumerate(zip(tokens_index,code_tokens)): index_to_code[index]=(idx,code) try: DFG,_=parser[1](root_node,index_to_code,{}) except: DFG=[] DFG=sorted(DFG,key=lambda x:x[1]) indexs=set() for d in DFG: if len(d[-1])!=0: indexs.add(d[1]) for x in d[-1]: indexs.add(x) new_DFG=[] for d in DFG: if d[1] in indexs: new_DFG.append(d) codes=code_tokens dfg=new_DFG except: codes=code.split() dfg=[] #merge nodes dic={} for d in dfg: if d[1] not in dic: dic[d[1]]=d else: dic[d[1]]=(d[0],d[1],d[2],list(set(dic[d[1]][3]+d[3])),list(set(dic[d[1]][4]+d[4]))) DFG=[] for d in dic: DFG.append(dic[d]) dfg=DFG return dfg def normalize_dataflow_item(dataflow_item): var_name = dataflow_item[0] var_pos = dataflow_item[1] relationship = dataflow_item[2] par_vars_name_list = dataflow_item[3] par_vars_pos_list = dataflow_item[4] var_names = list(set(par_vars_name_list+[var_name])) norm_names = {} for i in range(len(var_names)): norm_names[var_names[i]] = 'var_'+str(i) norm_var_name = norm_names[var_name] relationship = dataflow_item[2] norm_par_vars_name_list = [norm_names[x] for x in par_vars_name_list] return (norm_var_name, relationship, norm_par_vars_name_list) def normalize_dataflow(dataflow): var_dict = {} i = 0 normalized_dataflow = [] for item in dataflow: var_name = item[0] relationship = item[2] par_vars_name_list = item[3] for name in par_vars_name_list: if name not in var_dict: var_dict[name] = 'var_'+str(i) i += 1 if var_name not in var_dict: var_dict[var_name] = 'var_'+str(i) i+= 1 normalized_dataflow.append((var_dict[var_name], relationship, [var_dict[x] for x in par_vars_name_list])) return normalized_dataflow