jjuarez's picture
Create app.py
40283be
raw
history blame
881 Bytes
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
# Loading summarization model
summarization_tokenizer = AutoTokenizer.from_pretrained("ieuniversity/sciencebrief_summarization")
summarization_model = AutoModelForSeq2SeqLM.from_pretrained("ieuniversity/sciencebrief_summarization")
summarizer = pipeline("summarization", tokenizer=summarization_tokenizer, model=summarization_model)
def summarize(text):
return summarizer(text, max_length=120, min_length=30, do_sample=False)[0]['summary_text']
iface_summarize = gr.Interface(
fn=summarize,
inputs=gr.inputs.Textbox(lines=10, label="Input Text"),
outputs=gr.outputs.Textbox(label="Summary"),
title="ScienceBrief Summarization",
description="Get a summary of your text using the ScienceBrief summarization model.",
theme="compact"
)
iface_summarize.launch()