import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer import pandas as pd # Load pretrained model and tokenizer model_name = "jrocha/tiny_llama" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Load data df = pd.read_csv('splitted_df_jo.csv') # Function to prepare context def prepare_context(): pubmed_information_column = df['section_text'] pubmed_information_cleaned = "" for text in pubmed_information_column.tolist(): objective_index = text.find("Objective") if objective_index != -1: cleaned_text = text[:objective_index] pubmed_information_cleaned += cleaned_text else: pubmed_information_cleaned += text max_length = 1000 # Adjust as needed return pubmed_information_cleaned[:max_length] # Function to generate answer def answer_question(question): pubmed_information_cleaned = prepare_context() # Prepare input sequence messages = [ { "role": "system", "content": "You are a friendly chatbot who responds to questions about cancer. Please be considerate.", }, {"role": "user", "content": question}, ] prompt_with_pubmed = f"{pubmed_information_cleaned}\n\n" # Adjust formatting as needed prompt_with_pubmed += tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False) # Generate response input_ids = tokenizer.encode(prompt_with_pubmed, return_tensors='pt') output = model.generate(input_ids, max_length=600, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) # Decode and return generated text generated_text = tokenizer.decode(output[0], skip_special_tokens=True) position_assistant = generated_text.find("<|assistant|>") + len("<|assistant|>") return generated_text[position_assistant:] def main(): """" Initializes a Women Cancer ChatBot interface using Hugging Face models for question answering. This function loads a pretrained tokenizer and model from the Hugging Face model hub and creates a Gradio interface for the ChatBot. Users can input questions related to women's cancer topics, and the ChatBot will generate answers based on the provided context. Returns: None Example: >>> main() """ iface = gr.Interface(fn=answer_question, inputs=["text"], outputs=[gr.Textbox(label="Answer")], title="Women Cancer ChatBot", description="How can I help you?", examples=[ ["What is breast cancer?"], ["What are treatments for cervical cancer?"] ]) return iface.launch(debug = True, share=True) main()