# Gradio Application Interface import gradio as gr from transformers import pipeline from bs4 import BeautifulSoup import requests import pandas as pd import gensim import re import nltk from nltk.corpus import stopwords, wordnet from nltk.stem import WordNetLemmatizer import os def summarizer_func(): return pipeline( model="Majon911/pegasus_multi_news_ep1", tokenizer = "google/pegasus-xsum", min_length=100, max_length=200, truncation = True ) def sentiment_func(): return pipeline("text-classification", model="kbaumgartner/DeBERTa_Finetuned_Financial_News", tokenizer = "microsoft/deberta-v3-base") def source_outlet(choise): if choise == 'CNBC': url = "https://www.cnbc.com/finance/" response = requests.get(url) soup = BeautifulSoup(response.content, 'html.parser') headlines = {} headline_elements = soup.find_all('a', class_='Card-title') for headline_element in headline_elements: headlines[headline_element.text.strip()] = headline_element['href'] elif choise == "Reuters": pass df = pd.DataFrame({'headline': headlines.keys(), 'url': headlines.values()}) first_5_articles = df.head() first_5_articles = first_5_articles.assign(text='') first_5_articles = first_5_articles.assign(summary='') first_5_articles = first_5_articles.assign(sentiment='') first_5_articles = first_5_articles.assign(topic='') return first_5_articles def sentiment_translation(curr_sentiment): if curr_sentiment == "LABEL_0": trans_lbl = "NEGATIVE" elif curr_sentiment == "LABEL_1": trans_lbl = "NEUTRAL" elif curr_sentiment == "LABEL_2": trans_lbl = "POSITIVE" return trans_lbl def preprocess(text): # Remove special characters and digits text = text.lower() text = re.sub("(\\d|\\W)+", " ", text) stop_words = set(stopwords.words('english')) lemmatizer = WordNetLemmatizer() tokens = [lemmatizer.lemmatize(word) for word in text.lower().split() if word not in stop_words and len(word) > 3] return tokens def lda_topic_modeling(text): lda_model = gensim.models.LdaModel.load("lda_gensim_5t/lda_model5.gensim") dictionary = gensim.corpora.Dictionary.load("lda_gensim_5t/dictionary5.gensim") processed_text = preprocess(text) bow = dictionary.doc2bow(processed_text) topic_distribution = lda_model.get_document_topics(bow, minimum_probability=0.0) topic_distribution = sorted(topic_distribution, key=lambda x: x[1], reverse=True) topic_names = { '0': "Corporate Valuation & Performance", '1': "Quarterly Financial Reports", '2': "Stock Market & Investment Funds", '3': "Corporate Affairs & Products", '4': "Investment Research" } # Extract the most probable topic and its probability if topic_distribution: dominant_topic, probability = topic_distribution[0] topic_name = topic_names.get(str(dominant_topic), "Unknown Topic") return (topic_name, probability) else: # If no topic is found, return a placeholder and zero probability return ("No Topic Found", 0.0) def gradio_stocknews(source_ch, art_number): # Defining the summarizer summarizer = summarizer_func() # Defining the semtiment analysis pipe_sentiment = sentiment_func() # Identyfying the Articles first_5_articles = source_outlet(source_ch) # Scraping text for the chosen article response = requests.get(first_5_articles.loc[art_number-1, 'url']) sub_soup = BeautifulSoup(response.content, 'html.parser') article_body_element = sub_soup.find('div', class_='ArticleBody-articleBody') # ArticleBody-articleBody article_text = article_body_element.get_text() # Extracting only the text first_5_articles.loc[art_number-1, 'text'] = article_text first_5_articles.loc[art_number-1, 'summary'] = summarizer(article_text)[0]['generated_text'] label_sentiment = pipe_sentiment(article_text)[0]['label'] first_5_articles.loc[art_number-1, 'sentiment'] = sentiment_translation(label_sentiment) # Get the human-readable topic name using the topic names mapping first_5_articles.loc[art_number-1, 'topic'] = lda_topic_modeling(article_text)[0] return first_5_articles.loc[art_number-1, 'headline'], first_5_articles.loc[art_number-1, 'url'], first_5_articles.loc[art_number-1, 'summary'], first_5_articles.loc[art_number-1, 'sentiment'], first_5_articles.loc[art_number-1, 'topic'] def main(): os.chdir(os.path.dirname(os.path.realpath(__file__))) nltk.download('stopwords') #print(gradio_stocknews("CNBC", 2)) iface = gr.Interface(fn=gradio_stocknews, inputs=[gr.Dropdown(choices=["CNBC"], label="Select Source"), gr.Dropdown(choices=[1, 2, 3, 4, 5], label="Select Article Number")], outputs=[gr.Textbox(lines=1, label="Article Title"), gr.Textbox(lines=1, label="Article Link"), gr.Textbox(lines=1, label="Article Summary"), gr.Textbox(lines=1, label="Article Sentiment"), gr.Textbox(lines=1, label="Article Topic")], # Add this line for topic title="Latest 5 Stock News Dashboard", description="Click the button to refresh the news summary.") iface.launch() if __name__ == "__main__": main()