Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,29 +3,56 @@ import numpy as np
|
|
3 |
import random
|
4 |
import spaces
|
5 |
import torch
|
6 |
-
|
7 |
-
from
|
|
|
|
|
8 |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
9 |
|
10 |
dtype = torch.bfloat16
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
|
|
13 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
14 |
-
good_vae = AutoencoderKL.from_pretrained(
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
torch.cuda.empty_cache()
|
17 |
|
18 |
-
|
19 |
-
|
20 |
|
21 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
22 |
|
|
|
|
|
|
|
23 |
@spaces.GPU(duration=75)
|
24 |
-
def infer(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
if randomize_seed:
|
26 |
seed = random.randint(0, MAX_SEED)
|
|
|
27 |
generator = torch.Generator().manual_seed(seed)
|
28 |
-
|
29 |
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
30 |
prompt=prompt,
|
31 |
guidance_scale=guidance_scale,
|
@@ -37,14 +64,46 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidan
|
|
37 |
good_vae=good_vae,
|
38 |
):
|
39 |
yield img, seed
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
]
|
46 |
|
47 |
-
css="""
|
48 |
#col-container {
|
49 |
margin: 0 auto;
|
50 |
max-width: 520px;
|
@@ -52,24 +111,23 @@ css="""
|
|
52 |
"""
|
53 |
|
54 |
with gr.Blocks(css=css) as demo:
|
55 |
-
|
56 |
with gr.Column(elem_id="col-container"):
|
57 |
-
gr.Markdown(
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
71 |
with gr.Row():
|
72 |
-
|
73 |
prompt = gr.Text(
|
74 |
label="Prompt",
|
75 |
show_label=False,
|
@@ -77,13 +135,11 @@ with gr.Blocks(css=css) as demo:
|
|
77 |
placeholder="Enter your prompt",
|
78 |
container=False,
|
79 |
)
|
80 |
-
|
81 |
run_button = gr.Button("Run", scale=0)
|
82 |
-
|
83 |
result = gr.Image(label="Result", show_label=False)
|
84 |
-
|
85 |
with gr.Accordion("Advanced Settings", open=False):
|
86 |
-
|
87 |
seed = gr.Slider(
|
88 |
label="Seed",
|
89 |
minimum=0,
|
@@ -91,11 +147,9 @@ with gr.Blocks(css=css) as demo:
|
|
91 |
step=1,
|
92 |
value=0,
|
93 |
)
|
94 |
-
|
95 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
96 |
-
|
97 |
with gr.Row():
|
98 |
-
|
99 |
width = gr.Slider(
|
100 |
label="Width",
|
101 |
minimum=256,
|
@@ -103,7 +157,6 @@ with gr.Blocks(css=css) as demo:
|
|
103 |
step=32,
|
104 |
value=1024,
|
105 |
)
|
106 |
-
|
107 |
height = gr.Slider(
|
108 |
label="Height",
|
109 |
minimum=256,
|
@@ -111,9 +164,8 @@ with gr.Blocks(css=css) as demo:
|
|
111 |
step=32,
|
112 |
value=1024,
|
113 |
)
|
114 |
-
|
115 |
-
with gr.Row():
|
116 |
|
|
|
117 |
guidance_scale = gr.Slider(
|
118 |
label="Guidance Scale",
|
119 |
minimum=1,
|
@@ -121,7 +173,6 @@ with gr.Blocks(css=css) as demo:
|
|
121 |
step=0.1,
|
122 |
value=3.5,
|
123 |
)
|
124 |
-
|
125 |
num_inference_steps = gr.Slider(
|
126 |
label="Number of inference steps",
|
127 |
minimum=1,
|
@@ -129,20 +180,19 @@ with gr.Blocks(css=css) as demo:
|
|
129 |
step=1,
|
130 |
value=28,
|
131 |
)
|
132 |
-
|
133 |
gr.Examples(
|
134 |
-
examples
|
135 |
-
|
136 |
-
|
137 |
-
outputs = [result, seed],
|
138 |
cache_examples="lazy"
|
139 |
)
|
140 |
|
141 |
gr.on(
|
142 |
triggers=[run_button.click, prompt.submit],
|
143 |
-
fn
|
144 |
-
inputs
|
145 |
-
outputs
|
146 |
)
|
147 |
|
148 |
demo.launch()
|
|
|
3 |
import random
|
4 |
import spaces
|
5 |
import torch
|
6 |
+
|
7 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
|
8 |
+
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
9 |
+
|
10 |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
11 |
|
12 |
dtype = torch.bfloat16
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
|
15 |
+
# Загружаем автоэнкодер и VAE
|
16 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
17 |
+
good_vae = AutoencoderKL.from_pretrained(
|
18 |
+
"ifmain/UltraReal_Fine-Tune",
|
19 |
+
subfolder="vae",
|
20 |
+
torch_dtype=dtype
|
21 |
+
).to(device)
|
22 |
+
|
23 |
+
# Загружаем основной пайплайн
|
24 |
+
pipe = DiffusionPipeline.from_pretrained(
|
25 |
+
"ifmain/UltraReal_Fine-Tune",
|
26 |
+
torch_dtype=dtype,
|
27 |
+
vae=taef1
|
28 |
+
).to(device)
|
29 |
+
|
30 |
torch.cuda.empty_cache()
|
31 |
|
32 |
+
# Подключаем LoRA
|
33 |
+
pipe.load_lora_weights("ifMain/realism")
|
34 |
|
35 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
36 |
|
37 |
+
MAX_SEED = np.iinfo(np.int32).max
|
38 |
+
MAX_IMAGE_SIZE = 2048
|
39 |
+
|
40 |
@spaces.GPU(duration=75)
|
41 |
+
def infer(
|
42 |
+
prompt,
|
43 |
+
seed=42,
|
44 |
+
randomize_seed=False,
|
45 |
+
width=1024,
|
46 |
+
height=1024,
|
47 |
+
guidance_scale=3.5,
|
48 |
+
num_inference_steps=28,
|
49 |
+
progress=gr.Progress(track_tqdm=True)
|
50 |
+
):
|
51 |
if randomize_seed:
|
52 |
seed = random.randint(0, MAX_SEED)
|
53 |
+
|
54 |
generator = torch.Generator().manual_seed(seed)
|
55 |
+
|
56 |
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
57 |
prompt=prompt,
|
58 |
guidance_scale=guidance_scale,
|
|
|
64 |
good_vae=good_vae,
|
65 |
):
|
66 |
yield img, seed
|
67 |
+
|
68 |
+
# Полные примеры с различными стилями и условиями съемки
|
69 |
+
full_examples = [
|
70 |
+
[
|
71 |
+
"d1g1cam, amateur photo, low-lit, Low-resolution photo, shot on a mobile phone, nighttime, noticeable noise in dark areas. "
|
72 |
+
"Young woman, late 20s, casually dressed in an oversized pink T-shirt, outdoors, her gaze directed to the side, sad expression, holding a cup of coffee. "
|
73 |
+
"Her blonde hair is loosely tied back. Her face partially shadowed, minimal makeup visible. She is standing on the street near Soviet-era storey buildings, trees, parked cars nearby. "
|
74 |
+
"Dull, overcast lighting.",
|
75 |
+
1024, 1024, 3.5, 28
|
76 |
+
],
|
77 |
+
[
|
78 |
+
"v8s, Dimly lit photo, grungy aesthetic, gritty urban, Los Angeles city on background, interior of muscle car driving at high speed. "
|
79 |
+
"Amateur quality, nighttime, in motion, smeared background, headlights glowing, noise and grain film. "
|
80 |
+
"Glowing dashboard where speedometer is blurred, rearview mirror, woman's hand with black nail polish on steering wheel. "
|
81 |
+
"First-person perspective, wide-angle GoPro lens.",
|
82 |
+
1024, 768, 4.0, 30
|
83 |
+
],
|
84 |
+
[
|
85 |
+
"The image depicts a woman standing outdoors on a snowy path. The individual is wearing a black coat over an orange dress adorned with white floral patterns. "
|
86 |
+
"They have accessorized with a long, striped scarf in shades of brown and orange that drapes around their neck and shoulders. "
|
87 |
+
"The woman's feet are bare, suggesting it might be cold outside. In the background, there are multi-story residential buildings with balconies, indicating an urban setting. "
|
88 |
+
"The ground is partially covered with snow, and the sky appears overcast. "
|
89 |
+
"Photorealistic 8K, film grain, textured skin, dramatic lighting, RAW photo, highly detailed.",
|
90 |
+
1024, 1024, 3.0, 25
|
91 |
+
],
|
92 |
+
[
|
93 |
+
"Photorealistic close-up portrait of an elderly man with deep wrinkles and a gray beard. His eyes reflect wisdom and experience. "
|
94 |
+
"Soft lighting highlights the texture of his skin. He wears a simple wool sweater. The background is blurred, resembling an indoor wooden interior with bookshelves. "
|
95 |
+
"Film-like quality, 85mm lens, f/1.8 depth of field, cinematic lighting.",
|
96 |
+
768, 1024, 3.8, 35
|
97 |
+
],
|
98 |
+
[
|
99 |
+
"Golden hour landscape of a countryside road. The sun is setting, casting warm golden light over rolling hills and a winding dirt path. "
|
100 |
+
"Lush green trees line the road, and distant mountains are faintly visible. The sky is a blend of soft pink and deep orange hues. "
|
101 |
+
"Captured on a full-frame DSLR, 50mm f/2.0 lens, soft focus, detailed textures.",
|
102 |
+
1536, 1024, 2.5, 20
|
103 |
+
],
|
104 |
]
|
105 |
|
106 |
+
css = """
|
107 |
#col-container {
|
108 |
margin: 0 auto;
|
109 |
max-width: 520px;
|
|
|
111 |
"""
|
112 |
|
113 |
with gr.Blocks(css=css) as demo:
|
|
|
114 |
with gr.Column(elem_id="col-container"):
|
115 |
+
gr.Markdown(
|
116 |
+
"""# UltraReal Fine-Tune (Flux.1 Dev)
|
117 |
+
|
118 |
+
**🚀 Фотореализм нового уровня!**
|
119 |
+
Вышла 4-я версия **UltraReal Fine-Tune**, основанная на **Flux.1 Dev**.
|
120 |
+
Скачать можно тут: [Civitai](https://civitai.com/models/978314?modelVersionId=1413133)
|
121 |
+
|
122 |
+
**🚀 Next-level photorealism!**
|
123 |
+
The 4th version of **UltraReal Fine-Tune**, based on **Flux.1 Dev**, has been released.
|
124 |
+
You can download it here: [Civitai](https://civitai.com/models/978314?modelVersionId=1413133)
|
125 |
+
|
126 |
+
[[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)]
|
127 |
+
"""
|
128 |
+
)
|
129 |
+
|
130 |
with gr.Row():
|
|
|
131 |
prompt = gr.Text(
|
132 |
label="Prompt",
|
133 |
show_label=False,
|
|
|
135 |
placeholder="Enter your prompt",
|
136 |
container=False,
|
137 |
)
|
|
|
138 |
run_button = gr.Button("Run", scale=0)
|
139 |
+
|
140 |
result = gr.Image(label="Result", show_label=False)
|
141 |
+
|
142 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
143 |
seed = gr.Slider(
|
144 |
label="Seed",
|
145 |
minimum=0,
|
|
|
147 |
step=1,
|
148 |
value=0,
|
149 |
)
|
|
|
150 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
151 |
+
|
152 |
with gr.Row():
|
|
|
153 |
width = gr.Slider(
|
154 |
label="Width",
|
155 |
minimum=256,
|
|
|
157 |
step=32,
|
158 |
value=1024,
|
159 |
)
|
|
|
160 |
height = gr.Slider(
|
161 |
label="Height",
|
162 |
minimum=256,
|
|
|
164 |
step=32,
|
165 |
value=1024,
|
166 |
)
|
|
|
|
|
167 |
|
168 |
+
with gr.Row():
|
169 |
guidance_scale = gr.Slider(
|
170 |
label="Guidance Scale",
|
171 |
minimum=1,
|
|
|
173 |
step=0.1,
|
174 |
value=3.5,
|
175 |
)
|
|
|
176 |
num_inference_steps = gr.Slider(
|
177 |
label="Number of inference steps",
|
178 |
minimum=1,
|
|
|
180 |
step=1,
|
181 |
value=28,
|
182 |
)
|
183 |
+
|
184 |
gr.Examples(
|
185 |
+
examples=full_examples,
|
186 |
+
inputs=[prompt, width, height, guidance_scale, num_inference_steps],
|
187 |
+
outputs=[result, seed],
|
|
|
188 |
cache_examples="lazy"
|
189 |
)
|
190 |
|
191 |
gr.on(
|
192 |
triggers=[run_button.click, prompt.submit],
|
193 |
+
fn=infer,
|
194 |
+
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
195 |
+
outputs=[result, seed]
|
196 |
)
|
197 |
|
198 |
demo.launch()
|