|
from huggingface_hub import from_pretrained_fastai |
|
import gradio as gr |
|
from fastai.vision.all import * |
|
from icevision.all import * |
|
|
|
|
|
|
|
|
|
model1 = models.torchvision.faster_rcnn.model(backbone=models.torchvision.faster_rcnn.backbones.resnet18_fpn, num_classes=len(class_map)) |
|
state_dict = torch.load('fasterRCNN_resnet18_Raccoons.pth') |
|
model1.load_state_dict(state_dict) |
|
|
|
|
|
|
|
def show_preds(input_image, display_label, display_bbox, detection_threshold): |
|
|
|
if detection_threshold==0: detection_threshold=0.5 |
|
|
|
img = PIL.Image.fromarray(input_image, 'RGB') |
|
|
|
pred_dict = models.torchvision.faster_rcnn.end2end_detect(img, valid_tfms, model1, class_map=class_map, detection_threshold=detection_threshold, |
|
display_label=display_label, display_bbox=display_bbox, return_img=True, |
|
font_size=16, label_color="#FF59D6") |
|
|
|
return pred_dict['img'] |
|
|
|
|
|
display_chkbox_label = gr.inputs.Checkbox(label="Label", default=True) |
|
display_chkbox_box = gr.inputs.Checkbox(label="Box", default=True) |
|
|
|
detection_threshold_slider = gr.inputs.Slider(minimum=0, maximum=1, step=0.1, default=0.5, label="Detection Threshold") |
|
|
|
outputs = gr.outputs.Image(type="pil") |
|
|
|
|
|
gr_interface = gr.Interface(fn=show_preds, inputs=["image", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, examples=['raccoon1.jpg','raccoon2.jpg']) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gr_interface.launch(inline=False, share=False, debug=True) |