igmarco commited on
Commit
d6bff1a
·
1 Parent(s): 1a2f706

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -16
app.py CHANGED
@@ -2,24 +2,50 @@ from huggingface_hub import from_pretrained_fastai
2
  import gradio as gr
3
  from fastai.vision.all import *
4
  from icevision.all import *
5
- from icevision.models.checkpoint import *
6
  import PIL
7
 
8
- checkpoint_path = "fasterRCNN_resnet18_Raccoons.pth"
9
- model = models.torchvision.faster_rcnn.model(backbone=models.torchvision.faster_rcnn.backbones.resnet18_fpn(pretrained=True),
10
- num_classes=2)
11
 
12
- state_dict = torch.load(checkpoint_path, map_location=torch.device('cpu'))
13
- model.load_state_dict(state_dict)
14
 
15
- infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(384),tfms.A.Normalize()])
 
 
 
16
 
17
- # Definimos una función que se encarga de llevar a cabo las predicciones
18
- def predict(img):
19
- img = PIL.Image.fromarray(img, "RGB")
20
- pred_dict = models.torchvision.faster_rcnn.end2end_detect(img, infer_tfms, model.to("cpu"), class_map=ClassMap(['raccoon']), detection_threshold=0.5)
21
- return pred_dict["img"]
22
-
23
- # Creamos la interfaz y la lanzamos.
24
- gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=[gr.outputs.Image(type="pil", label="VFNet Inference")],
25
- examples=['raccoon1.jpg','raccoon2.jpg']).launch(share=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import gradio as gr
3
  from fastai.vision.all import *
4
  from icevision.all import *
 
5
  import PIL
6
 
7
+ class_map = ['raccoon']
 
 
8
 
9
+ presize = 512
10
+ size = 384
11
 
12
+ train_tfms = tfms.A.Adapter(
13
+ [*tfms.A.aug_tfms(size=size, presize=presize), tfms.A.Normalize()]
14
+ )
15
+ valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(size), tfms.A.Normalize()])
16
 
17
+ model1 = models.torchvision.faster_rcnn.model(backbone=models.torchvision.faster_rcnn.backbones.resnet18_fpn(pretrained=True), num_classes=len(class_map))
18
+ state_dict = torch.load('fasterRCNN_resnet18_Raccoons.pth', map_location=torch.device('cpu'))
19
+ model1.load_state_dict(state_dict)
20
+
21
+ def show_preds(input_image, display_label, display_bbox, detection_threshold):
22
+
23
+ if detection_threshold==0: detection_threshold=0.5
24
+
25
+ img = PIL.Image.fromarray(input_image, 'RGB')
26
+
27
+ pred_dict = models.torchvision.faster_rcnn.end2end_detect(img, valid_tfms, model1, class_map=class_map, detection_threshold=detection_threshold,
28
+ display_label=display_label, display_bbox=display_bbox, return_img=True,
29
+ font_size=16, label_color="#FF59D6")
30
+
31
+ return pred_dict['img']
32
+
33
+ # display_chkbox = gr.inputs.CheckboxGroup(["Label", "BBox"], label="Display", default=True)
34
+ display_chkbox_label = gr.inputs.Checkbox(label="Label", default=True)
35
+ display_chkbox_box = gr.inputs.Checkbox(label="Box", default=True)
36
+
37
+ detection_threshold_slider = gr.inputs.Slider(minimum=0, maximum=1, step=0.1, default=0.5, label="Detection Threshold")
38
+
39
+ outputs = gr.outputs.Image(type="pil")
40
+
41
+ # Option 1: Get an image from local drive
42
+ gr_interface = gr.Interface(fn=show_preds, inputs=["image", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, examples=['raccoon1.jpg','raccoon2.jpg'])
43
+
44
+ # # Option 2: Grab an image from a webcam
45
+ # gr_interface = gr.Interface(fn=show_preds, inputs=["webcam", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - COCO', live=False)
46
+
47
+ # # Option 3: Continuous image stream from the webcam
48
+ # gr_interface = gr.Interface(fn=show_preds, inputs=["webcam", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - COCO', live=True)
49
+
50
+
51
+ gr_interface.launch(inline=False, share=False, debug=True)