Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,41 @@
|
|
1 |
from huggingface_hub import from_pretrained_fastai
|
2 |
import gradio as gr
|
3 |
-
|
4 |
-
from
|
5 |
|
|
|
|
|
6 |
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from huggingface_hub import from_pretrained_fastai
|
2 |
import gradio as gr
|
3 |
+
from fastai.vision.all import *
|
4 |
+
from icevision.all import *
|
5 |
|
6 |
+
# repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME"
|
7 |
+
repo_id = "igmarco/raccoon-image-detection"
|
8 |
|
9 |
+
model1 = from_pretrained_fastai(repo_id)
|
10 |
|
11 |
+
def show_preds(input_image, display_label, display_bbox, detection_threshold):
|
12 |
+
|
13 |
+
if detection_threshold==0: detection_threshold=0.5
|
14 |
+
|
15 |
+
img = PIL.Image.fromarray(input_image, 'RGB')
|
16 |
+
|
17 |
+
pred_dict = models.torchvision.faster_rcnn.end2end_detect(img, valid_tfms, model1, class_map=class_map, detection_threshold=detection_threshold,
|
18 |
+
display_label=display_label, display_bbox=display_bbox, return_img=True,
|
19 |
+
font_size=16, label_color="#FF59D6")
|
20 |
+
|
21 |
+
return pred_dict['img']
|
22 |
+
|
23 |
+
# display_chkbox = gr.inputs.CheckboxGroup(["Label", "BBox"], label="Display", default=True)
|
24 |
+
display_chkbox_label = gr.inputs.Checkbox(label="Label", default=True)
|
25 |
+
display_chkbox_box = gr.inputs.Checkbox(label="Box", default=True)
|
26 |
+
|
27 |
+
detection_threshold_slider = gr.inputs.Slider(minimum=0, maximum=1, step=0.1, default=0.5, label="Detection Threshold")
|
28 |
+
|
29 |
+
outputs = gr.outputs.Image(type="pil")
|
30 |
+
|
31 |
+
# Option 1: Get an image from local drive
|
32 |
+
gr_interface = gr.Interface(fn=show_preds, inputs=["image", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs,examples=['raccoon1.jpg','raccoon2.jpg'])
|
33 |
+
|
34 |
+
# # Option 2: Grab an image from a webcam
|
35 |
+
# gr_interface = gr.Interface(fn=show_preds, inputs=["webcam", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - COCO', live=False)
|
36 |
+
|
37 |
+
# # Option 3: Continuous image stream from the webcam
|
38 |
+
# gr_interface = gr.Interface(fn=show_preds, inputs=["webcam", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - COCO', live=True)
|
39 |
+
|
40 |
+
|
41 |
+
gr_interface.launch(inline=False, share=False, debug=True)
|