|
from huggingface_hub import from_pretrained_fastai |
|
import gradio as gr |
|
|
|
from fastai.text.all import * |
|
|
|
|
|
|
|
|
|
repo_id = "igmarco/AWD_LSTM-text-classification" |
|
|
|
learner = from_pretrained_fastai(repo_id) |
|
labels = ['hate speech', 'offensive language', 'neither'] |
|
|
|
|
|
def predict(txt): |
|
pred,pred_idx,probs = learner.predict(txt) |
|
return {labels[i]: float(probs[i]) for i in range(len(labels))} |
|
|
|
|
|
gr.Interface(fn=predict, inputs=gr.Textbox(lines=2, placeholder="Text Here..."), outputs=gr.outputs.Label(num_top_classes=3)).launch(share=False) |