from huggingface_hub import from_pretrained_fastai import gradio as gr # from fastai.vision.all import * from fastai.text.all import * # repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME" repo_id = "igmarco/AWD_LSTM-text-classification" learner = from_pretrained_fastai(repo_id) labels = ['hate speech', 'offensive language', 'neither'] # Definimos una funciĆ³n que se encarga de llevar a cabo las predicciones def predict(txt): pred,pred_idx,probs = learner.predict(txt) return {labels[i]: float(probs[i]) for i in range(len(labels))} # Creamos la interfaz y la lanzamos. gr.Interface(fn=predict, inputs=gr.Textbox(lines=2, placeholder="Text Here..."), outputs=gr.outputs.Label(num_top_classes=3)).launch(share=False)