File size: 8,067 Bytes
c62a6a1
 
 
 
 
 
 
 
 
 
db9bd14
 
c62a6a1
 
db9bd14
c62a6a1
 
 
 
 
 
 
db9bd14
0feefad
 
c62a6a1
 
db9bd14
c62a6a1
 
 
 
 
 
 
 
 
 
db9bd14
c62a6a1
 
 
 
 
db9bd14
c62a6a1
 
 
 
 
 
 
 
 
 
 
 
 
db9bd14
c62a6a1
db9bd14
 
c62a6a1
 
 
 
db9bd14
c62a6a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db9bd14
5da4d27
4e94fdb
5da4d27
05bd5d0
4b8982c
db9bd14
c62a6a1
 
 
 
 
 
 
db9bd14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import torch
from torch import cuda, bfloat16
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList
from langchain.llms import HuggingFacePipeline
from langchain.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
import gradio as gr
from langchain.embeddings import HuggingFaceEmbeddings


# Load the Hugging Face token from environment
HF_TOKEN = os.environ.get("HF_TOKEN", None)

# Define stopping criteria
class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        for stop_ids in stop_token_ids:
            if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
                return True
        return False

# Load the LLaMA model and tokenizer
model_id = 'meta-llama/Meta-Llama-3-8B-Instruct'
# model_id = 'mistralai/Mistral-7B-Instruct-v0.3'
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'

# Set quantization configuration
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type='nf4',
    bnb_4bit_use_double_quant=True,
    bnb_4bit_compute_dtype=bfloat16
)

tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", token=HF_TOKEN, quantization_config=bnb_config)

# Define stopping criteria
stop_list = ['\nHuman:', '\n```\n']
stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list]
stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids]
stopping_criteria = StoppingCriteriaList([StopOnTokens()])

# Create text generation pipeline
generate_text = pipeline(
    model=model,
    tokenizer=tokenizer,
    return_full_text=True,
    task='text-generation',
    stopping_criteria=stopping_criteria,
    temperature=0.1,
    max_new_tokens=512,
    repetition_penalty=1.1
)

llm = HuggingFacePipeline(pipeline=generate_text)

# Load the stored FAISS index
try:
    vectorstore = FAISS.load_local('faiss_index', HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cuda"}))
    print("Loaded embedding successfully")
except ImportError as e:
    print("FAISS could not be imported. Make sure FAISS is installed correctly.")
    raise e

# Set up the Conversational Retrieval Chain
chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True)

chat_history = []

def format_prompt(query):
    prompt = f"""
    You are a knowledgeable assistant with access to a comprehensive database. 
    I need you to answer my question and provide related information in a specific format.
    Here's what I need:
    1. A brief, general response to my question based on related answers retrieved.
    2. A JSON-formatted output containing:
       - "question": The original question.
       - "answer": The detailed answer.
       - "related_questions": A list of related questions and their answers, each as a dictionary with the keys:
         - "question": The related question.
         - "answer": The related answer.
    Here's my question:
    {query}
    Include a brief final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
    """
    return prompt

def qa_infer(query):
    formatted_prompt = format_prompt(query)
    result = chain({"question": formatted_prompt, "chat_history": chat_history})
    for doc in result['source_documents']:
        print("-"*50)
        print("Retrieved Document:", doc.page_content)
    print("#"*100)
    print(result['answer'])
    return result['answer']

EXAMPLES = ["How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM", 
            "Can BQ25896 support I2C interface?", 
            "Does TDA2 vout support bt656 8-bit mode?"]

demo = gr.Interface(fn=qa_infer, inputs="text", allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs="text")
demo.launch()

# import os
# import torch
# from torch import cuda, bfloat16
# from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList
# from langchain.llms import HuggingFacePipeline
# from langchain.vectorstores import FAISS
# from langchain.chains import ConversationalRetrievalChain
# import gradio as gr
# from langchain.embeddings import HuggingFaceEmbeddings

# # Load the Hugging Face token from environment
# HF_TOKEN = os.environ.get("HF_TOKEN", None)

# # Define stopping criteria
# class StopOnTokens(StoppingCriteria):
#     def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
#         for stop_ids in stop_token_ids:
#             if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
#                 return True
#         return False

# # Load the LLaMA model and tokenizer
# model_id = 'meta-llama/Meta-Llama-3-8B-Instruct'
# device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'

# # Set quantization configuration
# bnb_config = BitsAndBytesConfig(
#     load_in_4bit=True,
#     bnb_4bit_quant_type='nf4',
#     bnb_4bit_use_double_quant=True,
#     bnb_4bit_compute_dtype=bfloat16
# )

# tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
# model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", token=HF_TOKEN, quantization_config=bnb_config)

# # Define stopping criteria
# stop_list = ['\nHuman:', '\n```\n']
# stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list]
# stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids]
# stopping_criteria = StoppingCriteriaList([StopOnTokens()])

# # Create text generation pipeline
# generate_text = pipeline(
#     model=model,
#     tokenizer=tokenizer,
#     return_full_text=True,
#     task='text-generation',
#     stopping_criteria=stopping_criteria,
#     temperature=0.1,
#     max_new_tokens=512,
#     repetition_penalty=1.1
# )

# llm = HuggingFacePipeline(pipeline=generate_text)

# # Load the stored FAISS index
# try:
#     embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cuda"})
#     vectorstore = FAISS.load_local('faiss_index', embeddings)
#     print("Loaded embedding successfully")
# except ImportError as e:
#     print("FAISS could not be imported. Make sure FAISS is installed correctly.")
#     raise e

# # Set up the Conversational Retrieval Chain
# chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True)

# chat_history = []

# def format_prompt(query):
#     prompt = f"""
#     You are a knowledgeable assistant with access to a comprehensive database. 
#     I need you to answer my question and provide related information in a specific format.
#     Here's what I need:
#     1. A brief, general response to my question based on related answers retrieved.
#     2. A JSON-formatted output containing:
#        - "question": The original question.
#        - "answer": The detailed answer.
#        - "related_questions": A list of related questions and their answers, each as a dictionary with the keys:
#          - "question": The related question.
#          - "answer": The related answer.
#     Here's my question:
#     {query}
#     Include a brief final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
#     """
#     return prompt

# def qa_infer(query):
#     formatted_prompt = format_prompt(query)
#     result = chain({"question": formatted_prompt, "chat_history": chat_history})
#     return result['answer']

# EXAMPLES = ["How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM", 
#             "Can BQ25896 support I2C interface?", 
#             "Does TDA2 vout support bt656 8-bit mode?"]

# demo = gr.Interface(fn=qa_infer, inputs="text", allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs="text")
# demo.launch()