File size: 48,560 Bytes
4a33762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
Ticket Name: TDA2PXEVM: Is Conv with no relue supported In TDA2?

Query Text:
Part Number: TDA2PXEVM Other Parts Discussed in Thread: TDA2 Hi I get some accuracy problems with caffemodel importing. Here is my steps: a) Use tidl_model_import.out.exe convert regnet.prototxt/caffemodel to tidl_param/bin b) Compare each layer's output : onnx vs trace_dump_idx_wxh.y c) I find the first conv layer(with bn & relu) matched well(error < 1%) d) But conv_layer with no relu(which are inputs of eltwise_layer) cannot match original model layer's outputs I put a snapshot below : conv layers in green rect match, but conv layer without relu in red circle not match. regnet_import.zip So, is relu strictedly demanded to place after conv layer? Or this is just bugs in import tool? I upload my model and tools for analysis.

Responses:
Hi, Can you share the import output log to check the issue ? Thanks, Praveen

Hi Praveen Thanks for your replay! I uploaded LOG.txt. Geroge. 6675.LOG.txt  .\tidl_model_import.out.exe .\ONNX_Reg200M_CIFAR\tidl_import.txt
Caffe Network File : ONNX_Reg200M_CIFAR\trained\regnetx200mf_cifar_Relu96.prototxt
Caffe Model File   : ONNX_Reg200M_CIFAR\trained\regnetx200mf_cifar_Relu96.caffemodel
TIDL Network File  : ONNX_Reg200M_CIFAR\model\tidl_net_reg200cifar_relu96.bin
TIDL Model File    : ONNX_Reg200M_CIFAR\model\tidl_param_reg200cifar_relu96.bin
Name of the Network : REG200MCIFAR-ONNX
Num Inputs :               1
 Num of Layer Detected :  71
  0, TIDL_DataLayer                , data                                      0,  -1 ,  1 ,   x ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  0 ,       0 ,       0 ,       0 ,       0 ,       1 ,       3 ,      32 ,      32 ,         0 ,
  1, TIDL_ConvolutionLayer         , Conv_0                                    1,   1 ,  1 ,   0 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  1 ,       1 ,       3 ,      32 ,      32 ,       1 ,      32 ,      32 ,      32 ,    884736 ,
  2, TIDL_ConvolutionLayer         , Conv_2                                    1,   1 ,  1 ,   1 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  2 ,       1 ,      32 ,      32 ,      32 ,       1 ,      24 ,      32 ,      32 ,    786432 ,
  3, TIDL_ConvolutionLayer         , Conv_4                                    1,   1 ,  1 ,   2 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  3 ,       1 ,      24 ,      32 ,      32 ,       1 ,      24 ,      16 ,      16 ,    442368 ,
  4, TIDL_ConvolutionLayer         , Conv_6                                    1,   1 ,  1 ,   3 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  4 ,       1 ,      24 ,      16 ,      16 ,       1 ,      24 ,      16 ,      16 ,    147456 ,
  5, TIDL_ConvolutionLayer         , Conv_7                                    1,   1 ,  1 ,   1 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  5 ,       1 ,      32 ,      32 ,      32 ,       1 ,      24 ,      16 ,      16 ,    196608 ,
  6, TIDL_EltWiseLayer             , Add_8                                     1,   2 ,  1 ,   4 ,  5 ,  x ,  x ,  x ,  x ,  x ,  x ,  6 ,       1 ,      24 ,      16 ,      16 ,       1 ,      24 ,      16 ,      16 ,      6144 ,
  7, TIDL_BatchNormLayer           , Relu_9                                    1,   1 ,  1 ,   6 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  7 ,       1 ,      24 ,      16 ,      16 ,       1 ,      24 ,      16 ,      16 ,      6144 ,
  8, TIDL_ConvolutionLayer         , Conv_10                                   1,   1 ,  1 ,   7 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  8 ,       1 ,      24 ,      16 ,      16 ,       1 ,      56 ,      16 ,      16 ,    344064 ,
  9, TIDL_ConvolutionLayer         , Conv_12                                   1,   1 ,  1 ,   8 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  9 ,       1 ,      56 ,      16 ,      16 ,       1 ,      56 ,      16 ,      16 ,   1032192 ,
 10, TIDL_ConvolutionLayer         , Conv_14                                   1,   1 ,  1 ,   9 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 10 ,       1 ,      56 ,      16 ,      16 ,       1 ,      56 ,      16 ,      16 ,    802816 ,
 11, TIDL_ConvolutionLayer         , Conv_15                                   1,   1 ,  1 ,   7 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 11 ,       1 ,      24 ,      16 ,      16 ,       1 ,      56 ,      16 ,      16 ,    344064 ,
 12, TIDL_EltWiseLayer             , Add_16                                    1,   2 ,  1 ,  10 , 11 ,  x ,  x ,  x ,  x ,  x ,  x , 12 ,       1 ,      56 ,      16 ,      16 ,       1 ,      56 ,      16 ,      16 ,     14336 ,
 13, TIDL_BatchNormLayer           , Relu_17                                   1,   1 ,  1 ,  12 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 13 ,       1 ,      56 ,      16 ,      16 ,       1 ,      56 ,      16 ,      16 ,     14336 ,
 14, TIDL_ConvolutionLayer         , Conv_18                                   1,   1 ,  1 ,  13 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 14 ,       1 ,      56 ,      16 ,      16 ,       1 ,     152 ,      16 ,      16 ,   2179072 ,
 15, TIDL_ConvolutionLayer         , Conv_20                                   1,   1 ,  1 ,  14 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 15 ,       1 ,     152 ,      16 ,      16 ,       1 ,     152 ,       8 ,       8 ,    700416 ,
 16, TIDL_ConvolutionLayer         , Conv_22                                   1,   1 ,  1 ,  15 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 16 ,       1 ,     152 ,       8 ,       8 ,       1 ,     152 ,       8 ,       8 ,   1478656 ,
 17, TIDL_ConvolutionLayer         , Conv_23                                   1,   1 ,  1 ,  13 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 17 ,       1 ,      56 ,      16 ,      16 ,       1 ,     152 ,       8 ,       8 ,    544768 ,
 18, TIDL_EltWiseLayer             , Add_24                                    1,   2 ,  1 ,  16 , 17 ,  x ,  x ,  x ,  x ,  x ,  x , 18 ,       1 ,     152 ,       8 ,       8 ,       1 ,     152 ,       8 ,       8 ,      9728 ,
 19, TIDL_BatchNormLayer           , Relu_25                                   1,   1 ,  1 ,  18 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 19 ,       1 ,     152 ,       8 ,       8 ,       1 ,     152 ,       8 ,       8 ,      9728 ,
 20, TIDL_ConvolutionLayer         , Conv_26                                   1,   1 ,  1 ,  19 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 20 ,       1 ,     152 ,       8 ,       8 ,       1 ,     152 ,       8 ,       8 ,   1478656 ,
 21, TIDL_ConvolutionLayer         , Conv_28                                   1,   1 ,  1 ,  20 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 21 ,       1 ,     152 ,       8 ,       8 ,       1 ,     152 ,       8 ,       8 ,    700416 ,
 22, TIDL_ConvolutionLayer         , Conv_30                                   1,   1 ,  1 ,  21 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 22 ,       1 ,     152 ,       8 ,       8 ,       1 ,     152 ,       8 ,       8 ,   1478656 ,
 23, TIDL_EltWiseLayer             , Add_31                                    1,   2 ,  1 ,  22 , 19 ,  x ,  x ,  x ,  x ,  x ,  x , 23 ,       1 ,     152 ,       8 ,       8 ,       1 ,     152 ,       8 ,       8 ,      9728 ,
 24, TIDL_BatchNormLayer           , Relu_32                                   1,   1 ,  1 ,  23 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 24 ,       1 ,     152 ,       8 ,       8 ,       1 ,     152 ,       8 ,       8 ,      9728 ,
 25, TIDL_ConvolutionLayer         , Conv_33                                   1,   1 ,  1 ,  24 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 25 ,       1 ,     152 ,       8 ,       8 ,       1 ,     152 ,       8 ,       8 ,   1478656 ,
 26, TIDL_ConvolutionLayer         , Conv_35                                   1,   1 ,  1 ,  25 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 26 ,       1 ,     152 ,       8 ,       8 ,       1 ,     152 ,       8 ,       8 ,    700416 ,
 27, TIDL_ConvolutionLayer         , Conv_37                                   1,   1 ,  1 ,  26 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 27 ,       1 ,     152 ,       8 ,       8 ,       1 ,     152 ,       8 ,       8 ,   1478656 ,
 28, TIDL_EltWiseLayer             , Add_38                                    1,   2 ,  1 ,  27 , 24 ,  x ,  x ,  x ,  x ,  x ,  x , 28 ,       1 ,     152 ,       8 ,       8 ,       1 ,     152 ,       8 ,       8 ,      9728 ,
 29, TIDL_BatchNormLayer           , Relu_39                                   1,   1 ,  1 ,  28 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 29 ,       1 ,     152 ,       8 ,       8 ,       1 ,     152 ,       8 ,       8 ,      9728 ,
 30, TIDL_ConvolutionLayer         , Conv_40                                   1,   1 ,  1 ,  29 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 30 ,       1 ,     152 ,       8 ,       8 ,       1 ,     152 ,       8 ,       8 ,   1478656 ,
 31, TIDL_ConvolutionLayer         , Conv_42                                   1,   1 ,  1 ,  30 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 31 ,       1 ,     152 ,       8 ,       8 ,       1 ,     152 ,       8 ,       8 ,    700416 ,
 32, TIDL_ConvolutionLayer         , Conv_44                                   1,   1 ,  1 ,  31 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 32 ,       1 ,     152 ,       8 ,       8 ,       1 ,     152 ,       8 ,       8 ,   1478656 ,
 33, TIDL_EltWiseLayer             , Add_45                                    1,   2 ,  1 ,  32 , 29 ,  x ,  x ,  x ,  x ,  x ,  x , 33 ,       1 ,     152 ,       8 ,       8 ,       1 ,     152 ,       8 ,       8 ,      9728 ,
 34, TIDL_BatchNormLayer           , Relu_46                                   1,   1 ,  1 ,  33 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 34 ,       1 ,     152 ,       8 ,       8 ,       1 ,     152 ,       8 ,       8 ,      9728 ,
 35, TIDL_ConvolutionLayer         , Conv_47                                   1,   1 ,  1 ,  34 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 35 ,       1 ,     152 ,       8 ,       8 ,       1 ,     368 ,       8 ,       8 ,   3579904 ,
 36, TIDL_ConvolutionLayer         , Conv_49                                   1,   1 ,  1 ,  35 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 36 ,       1 ,     368 ,       8 ,       8 ,       1 ,     368 ,       4 ,       4 ,    423936 ,
 37, TIDL_ConvolutionLayer         , Conv_51                                   1,   1 ,  1 ,  36 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 37 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,   2166784 ,
 38, TIDL_ConvolutionLayer         , Conv_52                                   1,   1 ,  1 ,  34 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 38 ,       1 ,     152 ,       8 ,       8 ,       1 ,     368 ,       4 ,       4 ,    894976 ,
 39, TIDL_EltWiseLayer             , Add_53                                    1,   2 ,  1 ,  37 , 38 ,  x ,  x ,  x ,  x ,  x ,  x , 39 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,      5888 ,
 40, TIDL_BatchNormLayer           , Relu_54                                   1,   1 ,  1 ,  39 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 40 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,      5888 ,
 41, TIDL_ConvolutionLayer         , Conv_55                                   1,   1 ,  1 ,  40 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 41 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,   2166784 ,
 42, TIDL_ConvolutionLayer         , Conv_57                                   1,   1 ,  1 ,  41 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 42 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,    423936 ,
 43, TIDL_ConvolutionLayer         , Conv_59                                   1,   1 ,  1 ,  42 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 43 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,   2166784 ,
 44, TIDL_EltWiseLayer             , Add_60                                    1,   2 ,  1 ,  43 , 40 ,  x ,  x ,  x ,  x ,  x ,  x , 44 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,      5888 ,
 45, TIDL_BatchNormLayer           , Relu_61                                   1,   1 ,  1 ,  44 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 45 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,      5888 ,
 46, TIDL_ConvolutionLayer         , Conv_62                                   1,   1 ,  1 ,  45 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 46 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,   2166784 ,
 47, TIDL_ConvolutionLayer         , Conv_64                                   1,   1 ,  1 ,  46 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 47 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,    423936 ,
 48, TIDL_ConvolutionLayer         , Conv_66                                   1,   1 ,  1 ,  47 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 48 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,   2166784 ,
 49, TIDL_EltWiseLayer             , Add_67                                    1,   2 ,  1 ,  48 , 45 ,  x ,  x ,  x ,  x ,  x ,  x , 49 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,      5888 ,
 50, TIDL_BatchNormLayer           , Relu_68                                   1,   1 ,  1 ,  49 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 50 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,      5888 ,
 51, TIDL_ConvolutionLayer         , Conv_69                                   1,   1 ,  1 ,  50 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 51 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,   2166784 ,
 52, TIDL_ConvolutionLayer         , Conv_71                                   1,   1 ,  1 ,  51 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 52 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,    423936 ,
 53, TIDL_ConvolutionLayer         , Conv_73                                   1,   1 ,  1 ,  52 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 53 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,   2166784 ,
 54, TIDL_EltWiseLayer             , Add_74                                    1,   2 ,  1 ,  53 , 50 ,  x ,  x ,  x ,  x ,  x ,  x , 54 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,      5888 ,
 55, TIDL_BatchNormLayer           , Relu_75                                   1,   1 ,  1 ,  54 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 55 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,      5888 ,
 56, TIDL_ConvolutionLayer         , Conv_76                                   1,   1 ,  1 ,  55 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 56 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,   2166784 ,
 57, TIDL_ConvolutionLayer         , Conv_78                                   1,   1 ,  1 ,  56 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 57 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,    423936 ,
 58, TIDL_ConvolutionLayer         , Conv_80                                   1,   1 ,  1 ,  57 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 58 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,   2166784 ,
 59, TIDL_EltWiseLayer             , Add_81                                    1,   2 ,  1 ,  58 , 55 ,  x ,  x ,  x ,  x ,  x ,  x , 59 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,      5888 ,
 60, TIDL_BatchNormLayer           , Relu_82                                   1,   1 ,  1 ,  59 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 60 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,      5888 ,
 61, TIDL_ConvolutionLayer         , Conv_83                                   1,   1 ,  1 ,  60 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 61 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,   2166784 ,
 62, TIDL_ConvolutionLayer         , Conv_85                                   1,   1 ,  1 ,  61 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 62 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,    423936 ,
 63, TIDL_ConvolutionLayer         , Conv_87                                   1,   1 ,  1 ,  62 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 63 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,   2166784 ,
 64, TIDL_EltWiseLayer             , Add_88                                    1,   2 ,  1 ,  63 , 60 ,  x ,  x ,  x ,  x ,  x ,  x , 64 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,      5888 ,
 65, TIDL_BatchNormLayer           , Relu_89                                   1,   1 ,  1 ,  64 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 65 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,      5888 ,
 66, TIDL_ConvolutionLayer         , Conv_90                                   1,   1 ,  1 ,  65 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 66 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,   2166784 ,
 67, TIDL_ConvolutionLayer         , Conv_92                                   1,   1 ,  1 ,  66 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 67 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,    423936 ,
 68, TIDL_ConvolutionLayer         , Conv_94                                   1,   1 ,  1 ,  67 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 68 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,   2166784 ,
 69, TIDL_EltWiseLayer             , Add_95                                    1,   2 ,  1 ,  68 , 65 ,  x ,  x ,  x ,  x ,  x ,  x , 69 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,      5888 ,
 70, TIDL_BatchNormLayer           , Relu_96                                   1,   1 ,  1 ,  69 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 70 ,       1 ,     368 ,       4 ,       4 ,       1 ,     368 ,       4 ,       4 ,      5888 ,
Total Giga Macs : 0.0567
已复制         1 个文件。

Processing config file .\tempDir\qunat_stats_config.txt !
  0, TIDL_DataLayer                ,  0,  -1 ,  1 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  0 ,    0 ,    0 ,    0 ,    0 ,    1 ,    3 ,   32 ,   32 ,
  1, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  0 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  1 ,    1 ,    3 ,   32 ,   32 ,    1 ,   32 ,   32 ,   32 ,
  2, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  1 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  2 ,    1 ,   32 ,   32 ,   32 ,    1 ,   24 ,   32 ,   32 ,
  3, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  2 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  3 ,    1 ,   24 ,   32 ,   32 ,    1 ,   24 ,   16 ,   16 ,
  4, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  3 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  4 ,    1 ,   24 ,   16 ,   16 ,    1 ,   24 ,   16 ,   16 ,
  5, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  1 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  5 ,    1 ,   32 ,   32 ,   32 ,    1 ,   24 ,   16 ,   16 ,
  6, TIDL_EltWiseLayer             ,  1,   2 ,  1 ,  4 ,  5 ,  x ,  x ,  x ,  x ,  x ,  x ,  6 ,    1 ,   24 ,   16 ,   16 ,    1 ,   24 ,   16 ,   16 ,
  7, TIDL_BatchNormLayer           ,  1,   1 ,  1 ,  6 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  7 ,    1 ,   24 ,   16 ,   16 ,    1 ,   24 ,   16 ,   16 ,
  8, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  7 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  8 ,    1 ,   24 ,   16 ,   16 ,    1 ,   56 ,   16 ,   16 ,
  9, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  8 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  9 ,    1 ,   56 ,   16 ,   16 ,    1 ,   56 ,   16 ,   16 ,
 10, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  9 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 10 ,    1 ,   56 ,   16 ,   16 ,    1 ,   56 ,   16 ,   16 ,
 11, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  7 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 11 ,    1 ,   24 ,   16 ,   16 ,    1 ,   56 ,   16 ,   16 ,
 12, TIDL_EltWiseLayer             ,  1,   2 ,  1 , 10 , 11 ,  x ,  x ,  x ,  x ,  x ,  x , 12 ,    1 ,   56 ,   16 ,   16 ,    1 ,   56 ,   16 ,   16 ,
 13, TIDL_BatchNormLayer           ,  1,   1 ,  1 , 12 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 13 ,    1 ,   56 ,   16 ,   16 ,    1 ,   56 ,   16 ,   16 ,
 14, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 13 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 14 ,    1 ,   56 ,   16 ,   16 ,    1 ,  152 ,   16 ,   16 ,
 15, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 14 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 15 ,    1 ,  152 ,   16 ,   16 ,    1 ,  152 ,    8 ,    8 ,
 16, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 15 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 16 ,    1 ,  152 ,    8 ,    8 ,    1 ,  152 ,    8 ,    8 ,
 17, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 13 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 17 ,    1 ,   56 ,   16 ,   16 ,    1 ,  152 ,    8 ,    8 ,
 18, TIDL_EltWiseLayer             ,  1,   2 ,  1 , 16 , 17 ,  x ,  x ,  x ,  x ,  x ,  x , 18 ,    1 ,  152 ,    8 ,    8 ,    1 ,  152 ,    8 ,    8 ,
 19, TIDL_BatchNormLayer           ,  1,   1 ,  1 , 18 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 19 ,    1 ,  152 ,    8 ,    8 ,    1 ,  152 ,    8 ,    8 ,
 20, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 19 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 20 ,    1 ,  152 ,    8 ,    8 ,    1 ,  152 ,    8 ,    8 ,
 21, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 20 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 21 ,    1 ,  152 ,    8 ,    8 ,    1 ,  152 ,    8 ,    8 ,
 22, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 21 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 22 ,    1 ,  152 ,    8 ,    8 ,    1 ,  152 ,    8 ,    8 ,
 23, TIDL_EltWiseLayer             ,  1,   2 ,  1 , 22 , 19 ,  x ,  x ,  x ,  x ,  x ,  x , 23 ,    1 ,  152 ,    8 ,    8 ,    1 ,  152 ,    8 ,    8 ,
 24, TIDL_BatchNormLayer           ,  1,   1 ,  1 , 23 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 24 ,    1 ,  152 ,    8 ,    8 ,    1 ,  152 ,    8 ,    8 ,
 25, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 24 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 25 ,    1 ,  152 ,    8 ,    8 ,    1 ,  152 ,    8 ,    8 ,
 26, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 25 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 26 ,    1 ,  152 ,    8 ,    8 ,    1 ,  152 ,    8 ,    8 ,
 27, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 26 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 27 ,    1 ,  152 ,    8 ,    8 ,    1 ,  152 ,    8 ,    8 ,
 28, TIDL_EltWiseLayer             ,  1,   2 ,  1 , 27 , 24 ,  x ,  x ,  x ,  x ,  x ,  x , 28 ,    1 ,  152 ,    8 ,    8 ,    1 ,  152 ,    8 ,    8 ,
 29, TIDL_BatchNormLayer           ,  1,   1 ,  1 , 28 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 29 ,    1 ,  152 ,    8 ,    8 ,    1 ,  152 ,    8 ,    8 ,
 30, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 29 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 30 ,    1 ,  152 ,    8 ,    8 ,    1 ,  152 ,    8 ,    8 ,
 31, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 30 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 31 ,    1 ,  152 ,    8 ,    8 ,    1 ,  152 ,    8 ,    8 ,
 32, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 31 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 32 ,    1 ,  152 ,    8 ,    8 ,    1 ,  152 ,    8 ,    8 ,
 33, TIDL_EltWiseLayer             ,  1,   2 ,  1 , 32 , 29 ,  x ,  x ,  x ,  x ,  x ,  x , 33 ,    1 ,  152 ,    8 ,    8 ,    1 ,  152 ,    8 ,    8 ,
 34, TIDL_BatchNormLayer           ,  1,   1 ,  1 , 33 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 34 ,    1 ,  152 ,    8 ,    8 ,    1 ,  152 ,    8 ,    8 ,
 35, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 34 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 35 ,    1 ,  152 ,    8 ,    8 ,    1 ,  368 ,    8 ,    8 ,
 36, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 35 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 36 ,    1 ,  368 ,    8 ,    8 ,    1 ,  368 ,    4 ,    4 ,
 37, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 36 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 37 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 38, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 34 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 38 ,    1 ,  152 ,    8 ,    8 ,    1 ,  368 ,    4 ,    4 ,
 39, TIDL_EltWiseLayer             ,  1,   2 ,  1 , 37 , 38 ,  x ,  x ,  x ,  x ,  x ,  x , 39 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 40, TIDL_BatchNormLayer           ,  1,   1 ,  1 , 39 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 40 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 41, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 40 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 41 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 42, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 41 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 42 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 43, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 42 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 43 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 44, TIDL_EltWiseLayer             ,  1,   2 ,  1 , 43 , 40 ,  x ,  x ,  x ,  x ,  x ,  x , 44 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 45, TIDL_BatchNormLayer           ,  1,   1 ,  1 , 44 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 45 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 46, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 45 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 46 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 47, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 46 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 47 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 48, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 47 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 48 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 49, TIDL_EltWiseLayer             ,  1,   2 ,  1 , 48 , 45 ,  x ,  x ,  x ,  x ,  x ,  x , 49 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 50, TIDL_BatchNormLayer           ,  1,   1 ,  1 , 49 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 50 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 51, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 50 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 51 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 52, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 51 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 52 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 53, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 52 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 53 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 54, TIDL_EltWiseLayer             ,  1,   2 ,  1 , 53 , 50 ,  x ,  x ,  x ,  x ,  x ,  x , 54 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 55, TIDL_BatchNormLayer           ,  1,   1 ,  1 , 54 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 55 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 56, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 55 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 56 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 57, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 56 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 57 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 58, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 57 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 58 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 59, TIDL_EltWiseLayer             ,  1,   2 ,  1 , 58 , 55 ,  x ,  x ,  x ,  x ,  x ,  x , 59 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 60, TIDL_BatchNormLayer           ,  1,   1 ,  1 , 59 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 60 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 61, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 60 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 61 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 62, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 61 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 62 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 63, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 62 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 63 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 64, TIDL_EltWiseLayer             ,  1,   2 ,  1 , 63 , 60 ,  x ,  x ,  x ,  x ,  x ,  x , 64 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 65, TIDL_BatchNormLayer           ,  1,   1 ,  1 , 64 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 65 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 66, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 65 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 66 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 67, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 66 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 67 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 68, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 67 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 68 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 69, TIDL_EltWiseLayer             ,  1,   2 ,  1 , 68 , 65 ,  x ,  x ,  x ,  x ,  x ,  x , 69 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 70, TIDL_BatchNormLayer           ,  1,   1 ,  1 , 69 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 70 ,    1 ,  368 ,    4 ,    4 ,    1 ,  368 ,    4 ,    4 ,
 71, TIDL_DataLayer                ,  0,   1 , -1 , 70 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  0 ,    1 ,  368 ,    4 ,    4 ,    0 ,    0 ,    0 ,    0 ,
Layer ID    ,inBlkWidth  ,inBlkHeight ,inBlkPitch  ,outBlkWidth ,outBlkHeight,outBlkPitch ,numInChs    ,numOutChs   ,numProcInChs,numLclInChs ,numLclOutChs,numProcItrs ,numAccItrs  ,numHorBlock ,numVerBlock ,inBlkChPitch,outBlkChPitc,alignOrNot
      1           40           34           40           32           32           32            3           32            3            1            8            1            3            1            1         1360         1024            1
      2           32           32           32           32           32           32           32           24           32            7            8            1            5            1            1         1024         1024            1
      3           40           36           40           16           16           16            8            8            8            4            8            1            2            1            1         1440          256            1
      4           16           16           16           16           16           16           24           24           24            8            8            1            3            1            1          256          256            1
      5           32           32           32           16           16           16           32           24           32            7            8            1            5            1            1         1024          256            1
      8           16           16           16           16           16           16           24           56           24            8            8            1            3            1            1          256          256            1
      9           24           18           24           16           16           16            8            8            8            4            8            1            2            1            1          432          256            1
     10           16           16           16           16           16           16           56           56           56            8            8            1            7            1            1          256          256            1
     11           16           16           16           16           16           16           24           56           24            8            8            1            3            1            1          256          256            1
     14           16           16           16           16           16           16           56          152           56            8            8            1            7            1            1          256          256            1
     15           40           20           40           16            8           16            8            8            8            4            8            1            2            1            1          800          128            1
     16           16            8           16           16            8           16          152          152          152            8            8            1           19            1            1          128          128            1
     17           32           16           32           16            8           16           56          152           56            8            8            1            7            1            1          512          128            1
     20           16            8           16           16            8           16          152          152          152            8            8            1           19            1            1          128          128            1
     21           24           10           24           16            8           16            8            8            8            4            8            1            2            1            1          240          128            1
     22           16            8           16           16            8           16          152          152          152            8            8            1           19            1            1          128          128            1
     25           16            8           16           16            8           16          152          152          152            8            8            1           19            1            1          128          128            1
     26           24           10           24           16            8           16            8            8            8            4            8            1            2            1            1          240          128            1
     27           16            8           16           16            8           16          152          152          152            8            8            1           19            1            1          128          128            1
     30           16            8           16           16            8           16          152          152          152            8            8            1           19            1            1          128          128            1
     31           24           10           24           16            8           16            8            8            8            4            8            1            2            1            1          240          128            1
     32           16            8           16           16            8           16          152          152          152            8            8            1           19            1            1          128          128            1
     35           16            8           16           16            8           16          152          368          152            8            8            1           19            1            1          128          128            1
     36           40           12           40           16            4           16            8            8            8            4            8            1            2            1            1          480           64            1
     37           16            4           16           16            4           16          368          368          368            8            8            1           46            1            1           64           64            1
     38           32            8           32           16            4           16          152          368          152            8            8            1           19            1            1          256           64            1
     41           16            4           16           16            4           16          368          368          368            8            8            1           46            1            1           64           64            1
     42           24            6           24           16            4           16            8            8            8            4            8            1            2            1            1          144           64            1
     43           16            4           16           16            4           16          368          368          368            8            8            1           46            1            1           64           64            1
     46           16            4           16           16            4           16          368          368          368            8            8            1           46            1            1           64           64            1
     47           24            6           24           16            4           16            8            8            8            4            8            1            2            1            1          144           64            1
     48           16            4           16           16            4           16          368          368          368            8            8            1           46            1            1           64           64            1
     51           16            4           16           16            4           16          368          368          368            8            8            1           46            1            1           64           64            1
     52           24            6           24           16            4           16            8            8            8            4            8            1            2            1            1          144           64            1
     53           16            4           16           16            4           16          368          368          368            8            8            1           46            1            1           64           64            1
     56           16            4           16           16            4           16          368          368          368            8            8            1           46            1            1           64           64            1
     57           24            6           24           16            4           16            8            8            8            4            8            1            2            1            1          144           64            1
     58           16            4           16           16            4           16          368          368          368            8            8            1           46            1            1           64           64            1
     61           16            4           16           16            4           16          368          368          368            8            8            1           46            1            1           64           64            1
     62           24            6           24           16            4           16            8            8            8            4            8            1            2            1            1          144           64            1
     63           16            4           16           16            4           16          368          368          368            8            8            1           46            1            1           64           64            1
     66           16            4           16           16            4           16          368          368          368            8            8            1           46            1            1           64           64            1
     67           24            6           24           16            4           16            8            8            8            4            8            1            2            1            1          144           64            1
     68           16            4           16           16            4           16          368          368          368            8            8            1           46            1            1           64           64            1

Processing Frame Number : 0

 Layer    1 : Out Q :      239 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.88,     1.17, Sparsity : -32.41
 Layer    2 : Out Q :      324 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.79,     0.88, Sparsity : -12.50
 Layer    3 : Out Q :      212 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.44,     0.44, Sparsity :   0.00
 Layer    4 : Out Q :       95 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.15,     0.15, Sparsity :   0.00
 Layer    5 : Out Q :      142 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.20,     0.22, Sparsity : -12.50
 Layer    6 : Out Q :       87 , TIDL_EltWiseLayer,     PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer    7 : Out Q :      175 , TIDL_BatchNormLayer  , PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer    8 : Out Q :      452 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.34,     0.34, Sparsity :   0.00
 Layer    9 : Out Q :      544 , TIDL_ConvolutionLayer, PASSED  #MMACs =     1.03,     1.03, Sparsity :   0.00
 Layer   10 : Out Q :      239 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.80,     0.80, Sparsity :   0.00
 Layer   11 : Out Q :      148 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.34,     0.34, Sparsity :   0.00
 Layer   12 : Out Q :      139 , TIDL_EltWiseLayer,     PASSED  #MMACs =     0.03,     0.03, Sparsity :   0.00
 Layer   13 : Out Q :      279 , TIDL_BatchNormLayer  , PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer   14 : Out Q :      512 , TIDL_ConvolutionLayer, PASSED  #MMACs =     2.18,     2.18, Sparsity :   0.00
 Layer   15 : Out Q :      570 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.70,     0.70, Sparsity :   0.00
 Layer   16 : Out Q :      236 , TIDL_ConvolutionLayer, PASSED  #MMACs =     1.48,     1.48, Sparsity :   0.00
 Layer   17 : Out Q :      235 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.54,     0.54, Sparsity :   0.00
 Layer   18 : Out Q :      124 , TIDL_EltWiseLayer,     PASSED  #MMACs =     0.02,     0.02, Sparsity :   0.00
 Layer   19 : Out Q :      249 , TIDL_BatchNormLayer  , PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer   20 : Out Q :      621 , TIDL_ConvolutionLayer, PASSED  #MMACs =     1.48,     1.48, Sparsity :   0.00
 Layer   21 : Out Q :      670 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.70,     0.70, Sparsity :   0.00
 Layer   22 : Out Q :      267 , TIDL_ConvolutionLayer, PASSED  #MMACs =     1.48,     1.48, Sparsity :   0.00
 Layer   23 : Out Q :      131 , TIDL_EltWiseLayer,     PASSED  #MMACs =     0.02,     0.02, Sparsity :   0.00
 Layer   24 : Out Q :      263 , TIDL_BatchNormLayer  , PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer   25 : Out Q :      680 , TIDL_ConvolutionLayer, PASSED  #MMACs =     1.48,     1.48, Sparsity :   0.00
 Layer   26 : Out Q :      271 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.70,     0.70, Sparsity :   0.00
 Layer   27 : Out Q :      224 , TIDL_ConvolutionLayer, PASSED  #MMACs =     1.48,     1.48, Sparsity :   0.00
 Layer   28 : Out Q :      158 , TIDL_EltWiseLayer,     PASSED  #MMACs =     0.02,     0.02, Sparsity :   0.00
 Layer   29 : Out Q :      317 , TIDL_BatchNormLayer  , PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer   30 : Out Q :      884 , TIDL_ConvolutionLayer, PASSED  #MMACs =     1.48,     1.48, Sparsity :   0.00
 Layer   31 : Out Q :      665 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.70,     0.70, Sparsity :   0.00
 Layer   32 : Out Q :      556 , TIDL_ConvolutionLayer, PASSED  #MMACs =     1.48,     1.48, Sparsity :   0.00
 Layer   33 : Out Q :      150 , TIDL_EltWiseLayer,     PASSED  #MMACs =     0.02,     0.02, Sparsity :   0.00
 Layer   34 : Out Q :      301 , TIDL_BatchNormLayer  , PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer   35 : Out Q :      870 , TIDL_ConvolutionLayer, PASSED  #MMACs =     3.58,     3.58, Sparsity :   0.00
 Layer   36 : Out Q :      409 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.42,     0.42, Sparsity :   0.00
 Layer   37 : Out Q :      230 , TIDL_ConvolutionLayer, PASSED  #MMACs =     2.17,     2.17, Sparsity :   0.00
 Layer   38 : Out Q :      199 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.89,     0.89, Sparsity :   0.00
 Layer   39 : Out Q :      175 , TIDL_EltWiseLayer,     PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer   40 : Out Q :      351 , TIDL_BatchNormLayer  , PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer   41 : Out Q :     1196 , TIDL_ConvolutionLayer, PASSED  #MMACs =     2.17,     2.17, Sparsity :   0.00
 Layer   42 : Out Q :      483 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.42,     0.42, Sparsity :   0.00
 Layer   43 : Out Q :      220 , TIDL_ConvolutionLayer, PASSED  #MMACs =     2.17,     2.17, Sparsity :   0.00
 Layer   44 : Out Q :      158 , TIDL_EltWiseLayer,     PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer   45 : Out Q :      320 , TIDL_BatchNormLayer  , PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer   46 : Out Q :     1105 , TIDL_ConvolutionLayer, PASSED  #MMACs =     2.17,     2.17, Sparsity :   0.00
 Layer   47 : Out Q :      459 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.42,     0.42, Sparsity :   0.00
 Layer   48 : Out Q :      137 , TIDL_ConvolutionLayer, PASSED  #MMACs =     2.17,     2.17, Sparsity :   0.00
 Layer   49 : Out Q :      136 , TIDL_EltWiseLayer,     PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer   50 : Out Q :      287 , TIDL_BatchNormLayer  , PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer   51 : Out Q :     1024 , TIDL_ConvolutionLayer, PASSED  #MMACs =     2.17,     2.17, Sparsity :   0.00
 Layer   52 : Out Q :      631 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.42,     0.42, Sparsity :   0.00
 Layer   53 : Out Q :      178 , TIDL_ConvolutionLayer, PASSED  #MMACs =     2.17,     2.17, Sparsity :   0.00
 Layer   54 : Out Q :      109 , TIDL_EltWiseLayer,     PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer   55 : Out Q :      219 , TIDL_BatchNormLayer  , PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer   56 : Out Q :     1488 , TIDL_ConvolutionLayer, PASSED  #MMACs =     2.17,     2.17, Sparsity :   0.00
 Layer   57 : Out Q :      450 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.42,     0.42, Sparsity :   0.00
 Layer   58 : Out Q :      143 , TIDL_ConvolutionLayer, PASSED  #MMACs =     2.17,     2.17, Sparsity :   0.00
 Layer   59 : Out Q :      106 , TIDL_EltWiseLayer,     PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer   60 : Out Q :      213 , TIDL_BatchNormLayer  , PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer   61 : Out Q :     1198 , TIDL_ConvolutionLayer, PASSED  #MMACs =     2.17,     2.17, Sparsity :   0.00
 Layer   62 : Out Q :      556 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.42,     0.42, Sparsity :   0.00
 Layer   63 : Out Q :      150 , TIDL_ConvolutionLayer, PASSED  #MMACs =     2.17,     2.17, Sparsity :   0.00
 Layer   64 : Out Q :      102 , TIDL_EltWiseLayer,     PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer   65 : Out Q :      205 , TIDL_BatchNormLayer  , PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer   66 : Out Q :     1259 , TIDL_ConvolutionLayer, PASSED  #MMACs =     2.17,     2.17, Sparsity :   0.00
 Layer   67 : Out Q :      749 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.42,     0.42, Sparsity :   0.00
 Layer   68 : Out Q :      181 , TIDL_ConvolutionLayer, PASSED  #MMACs =     2.17,     2.17, Sparsity :   0.00
 Layer   69 : Out Q :      103 , TIDL_EltWiseLayer,     PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer   70 : Out Q :      207 , TIDL_BatchNormLayer  , PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00

Hi Praveen Is there any updates? lluo

Hi IIuo, I have looked at the log you shared, it looks okay to me, this configurations is supported on TDA2. Please follow steps mentioned in section 3.8 (Matching TIDL inference result) in the TIDL user guide. BTW, what is the TIDL release version that you are using? Thanks, Praveen

Hi Praveen I have been using REL.TIDL.01.01.03.00 . And the model & tools has been uploaded in regnet_import.zip. I will follow user guide to check my model on REL.TIDL.01.02.00.00 later.

Hi, Please check with REL.TIDL.01.02.00.00 and let us know. Thanks, Praveen