TI_RAG_Demo_L3.1 / app_multi_agents.py
syedmudassir16's picture
Rename app.py to app_multi_agents.py
83074ac verified
raw
history blame
10.8 kB
import os
import multiprocessing
import concurrent.futures
from langchain.document_loaders import TextLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from sentence_transformers import SentenceTransformer
import faiss
import torch
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
from datetime import datetime
import json
import gradio as gr
import re
from threading import Thread
class DocumentRetrievalAndGeneration:
def __init__(self, embedding_model_name, lm_model_id, data_folder):
self.all_splits = self.load_documents(data_folder)
self.embeddings = SentenceTransformer(embedding_model_name)
self.gpu_index = self.create_faiss_index()
self.tokenizer, self.model = self.initialize_llm(lm_model_id)
self.retriever_tool = self.create_retriever_tool()
def load_documents(self, folder_path):
loader = DirectoryLoader(folder_path, loader_cls=TextLoader)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=250)
all_splits = text_splitter.split_documents(documents)
print('Length of documents:', len(documents))
print("LEN of all_splits", len(all_splits))
for i in range(3):
print(all_splits[i].page_content)
return all_splits
def create_faiss_index(self):
all_texts = [split.page_content for split in self.all_splits]
embeddings = self.embeddings.encode(all_texts, convert_to_tensor=True).cpu().numpy()
index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(embeddings)
gpu_resource = faiss.StandardGpuResources()
gpu_index = faiss.index_cpu_to_gpu(gpu_resource, 0, index)
return gpu_index
def initialize_llm(self, model_id):
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
return tokenizer, model
def generate_response_with_timeout(self, input_ids, max_new_tokens=1000):
try:
streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=1.0,
top_k=20,
temperature=0.8,
repetition_penalty=1.2,
eos_token_id=[128001, 128008, 128009],
streamer=streamer,
)
thread = Thread(target=self.model.generate, kwargs=generate_kwargs)
thread.start()
generated_text = ""
for new_text in streamer:
generated_text += new_text
return generated_text
except Exception as e:
print(f"Error in generate_response_with_timeout: {str(e)}")
return "Text generation process encountered an error"
def create_retriever_tool(self):
class RetrieverTool:
def __init__(self, parent):
self.parent = parent
def run(self, query: str) -> str:
similarityThreshold = 1
query_embedding = self.parent.embeddings.encode(query, convert_to_tensor=True).cpu().numpy()
distances, indices = self.parent.gpu_index.search(np.array([query_embedding]), k=3)
content = ""
for idx, distance in zip(indices[0], distances[0]):
if distance <= similarityThreshold:
content += "-" * 50 + "\n"
content += self.parent.all_splits[idx].page_content + "\n"
return content
return RetrieverTool(self)
def run_standard_rag(self, query: str, content: str) -> str:
conversation = [
{"role": "system", "content": "You are a knowledgeable assistant with access to a comprehensive database."},
{"role": "user", "content": f"""
I need you to answer my question and provide related information in a specific format.
I have provided five relatable json files {content}, choose the most suitable chunks for answering the query.
RETURN ONLY SOLUTION without additional comments, sign-offs, retrived chunks, refrence to any Ticket or extra phrases. Be direct and to the point.
IF THERE IS NO ANSWER RELATABLE IN RETRIEVED CHUNKS, RETURN "NO SOLUTION AVAILABLE".
DO NOT GIVE REFRENCE TO ANY CHUNKS OR TICKETS,BE ON POINT.
Here's my question:
Query: {query}
Solution==>
"""}
]
input_ids = self.tokenizer.apply_chat_template(conversation, return_tensors="pt").to(self.model.device)
return self.generate_response_with_timeout(input_ids)
def run_agentic_rag(self, question: str) -> str:
retriever_output = self.retriever_tool.run(question)
enhanced_prompt = f"""Using the following information retrieved from the knowledge base:
{retriever_output}
Give a comprehensive answer to the question below.
Respond only to the question asked, be concise and relevant.
If you can't find information, say "No relevant information found."
Question: {question}
Answer:"""
input_ids = self.tokenizer.encode(enhanced_prompt, return_tensors="pt").to(self.model.device)
return self.generate_response_with_timeout(input_ids)
def run_analytical_rag(self, question: str) -> str:
retriever_output = self.retriever_tool.run(question)
enhanced_prompt = f"""Using the following information retrieved from the knowledge base:
{retriever_output}
Provide a detailed, step-by-step analysis of the question below. Break down the problem, consider different aspects, and provide a thorough explanation. If relevant information is missing, state what additional data would be needed for a complete analysis.
Question: {question}
Analysis:
1. """
input_ids = self.tokenizer.encode(enhanced_prompt, return_tensors="pt").to(self.model.device)
return self.generate_response_with_timeout(input_ids)
def query_and_generate_response(self, query):
# Retrieval step
similarityThreshold = 1
query_embedding = self.embeddings.encode(query, convert_to_tensor=True).cpu().numpy()
distances, indices = self.gpu_index.search(np.array([query_embedding]), k=3)
print("Distance", distances, "indices", indices)
content = ""
filtered_results = []
for idx, distance in zip(indices[0], distances[0]):
if distance <= similarityThreshold:
filtered_results.append(idx)
for i in filtered_results:
print(self.all_splits[i].page_content)
content += "-" * 50 + "\n"
content += self.all_splits[idx].page_content + "\n"
print("CHUNK", idx)
print("Distance:", distance)
print("indices:", indices)
print(self.all_splits[idx].page_content)
print("############################")
# Standard RAG
start_time = datetime.now()
standard_response = self.run_standard_rag(query, content)
elapsed_time = datetime.now() - start_time
print("Generated standard response:", standard_response)
print("Time elapsed:", elapsed_time)
print("Device in use:", self.model.device)
standard_solution_text = standard_response.strip()
if "Solution:" in standard_solution_text:
standard_solution_text = standard_solution_text.split("Solution:", 1)[1].strip()
standard_solution_text = re.sub(r'^assistant\s*', '', standard_solution_text, flags=re.IGNORECASE)
standard_solution_text = standard_solution_text.strip()
# Agentic RAG
agentic_solution_text = self.run_agentic_rag(query)
# Analytical RAG
analytical_solution_text = self.run_analytical_rag(query)
combined_solution = f"Standard RAG Solution:\n{standard_solution_text}\n\nAgentic RAG Solution:\n{agentic_solution_text}\n\nAnalytical RAG Solution:\n{analytical_solution_text}"
return combined_solution, content
def qa_infer_gradio(self, query):
response = self.query_and_generate_response(query)
return response
if __name__ == "__main__":
embedding_model_name = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L12'
lm_model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
data_folder = 'sample_embedding_folder2'
doc_retrieval_gen = DocumentRetrievalAndGeneration(embedding_model_name, lm_model_id, data_folder)
def launch_interface():
css_code = """
.gradio-container {
background-color: #daccdb;
}
button {
background-color: #927fc7;
color: black;
border: 1px solid black;
padding: 10px;
margin-right: 10px;
font-size: 16px;
font-weight: bold;
}
"""
EXAMPLES = [
"On which devices can the VIP and CSI2 modules operate simultaneously?",
"I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?",
"Could you clarify the maximum number of cameras that can be connected simultaneously to the video input ports on the TDA2x SoC, considering it supports up to 10 multiplexed input ports and includes 3 dedicated video input modules?"
]
interface = gr.Interface(
fn=doc_retrieval_gen.qa_infer_gradio,
inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here")],
allow_flagging='never',
examples=EXAMPLES,
cache_examples=False,
outputs=[gr.Textbox(label="RESPONSE"), gr.Textbox(label="RELATED QUERIES")],
css=css_code,
title="TI E2E FORUM"
)
interface.launch(debug=True)
launch_interface()