arjunanand13 commited on
Commit
02e5fcc
·
verified ·
1 Parent(s): 3dd2dc3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +143 -43
app.py CHANGED
@@ -1,60 +1,60 @@
1
  import os
2
  import torch
3
  from torch import cuda, bfloat16
4
- from transformers import AutoTokenizer, pipeline, BitsAndBytesConfig
5
  from langchain.llms import HuggingFacePipeline
6
  from langchain.vectorstores import FAISS
7
  from langchain.chains import ConversationalRetrievalChain
8
  import gradio as gr
9
  from langchain.embeddings import HuggingFaceEmbeddings
10
- from huggingface_hub import InferenceClient
11
 
12
  # Load the Hugging Face token from environment
13
  HF_TOKEN = os.environ.get("HF_TOKEN", None)
14
 
15
- # Load the Mistral model and tokenizer
16
- model_id = 'mistralai/Mistral-7B-Instruct-v0.3'
17
- client = InferenceClient(model_id)
18
-
19
- # # Define stopping criteria
20
- # class StopOnTokens:
21
- # def __call__(self, input_ids, scores, **kwargs):
22
- # for stop_ids in stop_token_ids:
23
- # if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
24
- # return True
25
- # return False
26
-
27
- # # Define stopping criteria list
28
- # stop_list = ['\nHuman:', '\n```\n']
29
- # stop_token_ids = [client.tokenizer(x)['input_ids'] for x in stop_list]
30
- # stop_token_ids = [torch.LongTensor(x).to(cuda.current_device() if cuda.is_available() else 'cpu') for x in stop_token_ids]
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  # Create text generation pipeline
33
- def generate(prompt, history = None, system_prompt=None, temperature=0.2, max_new_tokens=1024, top_p=0.95, repetition_penalty=1.0):
34
- temperature = float(temperature)
35
- if temperature < 1e-2:
36
- temperature = 1e-2
37
- top_p = float(top_p)
38
-
39
- generate_kwargs = dict(
40
- temperature=temperature,
41
- max_new_tokens=max_new_tokens,
42
- top_p=top_p,
43
- repetition_penalty=repetition_penalty,
44
- do_sample=True,
45
- seed=42,
46
- )
47
-
48
- formatted_prompt = format_prompt(prompt, history, system_prompt)
49
- stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
50
- output = ""
51
-
52
- for response in stream:
53
- output += response.token.text
54
- yield output
55
- return output
56
-
57
- llm = HuggingFacePipeline(pipeline=generate)
58
 
59
  # Load the stored FAISS index
60
  try:
@@ -103,3 +103,103 @@ EXAMPLES = ["How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
103
 
104
  demo = gr.Interface(fn=qa_infer, inputs="text", allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs="text")
105
  demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
  import torch
3
  from torch import cuda, bfloat16
4
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList
5
  from langchain.llms import HuggingFacePipeline
6
  from langchain.vectorstores import FAISS
7
  from langchain.chains import ConversationalRetrievalChain
8
  import gradio as gr
9
  from langchain.embeddings import HuggingFaceEmbeddings
10
+
11
 
12
  # Load the Hugging Face token from environment
13
  HF_TOKEN = os.environ.get("HF_TOKEN", None)
14
 
15
+ # Define stopping criteria
16
+ class StopOnTokens(StoppingCriteria):
17
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
18
+ for stop_ids in stop_token_ids:
19
+ if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
20
+ return True
21
+ return False
22
+
23
+ # Load the LLaMA model and tokenizer
24
+ # model_id = 'meta-llama/Meta-Llama-3-8B-Instruct'
25
+ model_id= "meta-llama/Llama-2-7b-chat-hf"
26
+ device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
27
+
28
+ # Set quantization configuration
29
+ bnb_config = BitsAndBytesConfig(
30
+ load_in_4bit=True,
31
+ bnb_4bit_quant_type='nf4',
32
+ bnb_4bit_use_double_quant=True,
33
+ bnb_4bit_compute_dtype=bfloat16
34
+ )
35
+
36
+ tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
37
+ model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", token=HF_TOKEN, quantization_config=bnb_config)
38
+
39
+ # Define stopping criteria
40
+ stop_list = ['\nHuman:', '\n```\n']
41
+ stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list]
42
+ stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids]
43
+ stopping_criteria = StoppingCriteriaList([StopOnTokens()])
44
 
45
  # Create text generation pipeline
46
+ generate_text = pipeline(
47
+ model=model,
48
+ tokenizer=tokenizer,
49
+ return_full_text=True,
50
+ task='text-generation',
51
+ stopping_criteria=stopping_criteria,
52
+ temperature=0.1,
53
+ max_new_tokens=512,
54
+ repetition_penalty=1.1
55
+ )
56
+
57
+ llm = HuggingFacePipeline(pipeline=generate_text)
 
 
 
 
 
 
 
 
 
 
 
 
 
58
 
59
  # Load the stored FAISS index
60
  try:
 
103
 
104
  demo = gr.Interface(fn=qa_infer, inputs="text", allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs="text")
105
  demo.launch()
106
+
107
+ # import os
108
+ # import torch
109
+ # from torch import cuda, bfloat16
110
+ # from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList
111
+ # from langchain.llms import HuggingFacePipeline
112
+ # from langchain.vectorstores import FAISS
113
+ # from langchain.chains import ConversationalRetrievalChain
114
+ # import gradio as gr
115
+ # from langchain.embeddings import HuggingFaceEmbeddings
116
+
117
+ # # Load the Hugging Face token from environment
118
+ # HF_TOKEN = os.environ.get("HF_TOKEN", None)
119
+
120
+ # # Define stopping criteria
121
+ # class StopOnTokens(StoppingCriteria):
122
+ # def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
123
+ # for stop_ids in stop_token_ids:
124
+ # if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
125
+ # return True
126
+ # return False
127
+
128
+ # # Load the LLaMA model and tokenizer
129
+ # model_id = 'meta-llama/Meta-Llama-3-8B-Instruct'
130
+ # device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
131
+
132
+ # # Set quantization configuration
133
+ # bnb_config = BitsAndBytesConfig(
134
+ # load_in_4bit=True,
135
+ # bnb_4bit_quant_type='nf4',
136
+ # bnb_4bit_use_double_quant=True,
137
+ # bnb_4bit_compute_dtype=bfloat16
138
+ # )
139
+
140
+ # tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
141
+ # model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", token=HF_TOKEN, quantization_config=bnb_config)
142
+
143
+ # # Define stopping criteria
144
+ # stop_list = ['\nHuman:', '\n```\n']
145
+ # stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list]
146
+ # stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids]
147
+ # stopping_criteria = StoppingCriteriaList([StopOnTokens()])
148
+
149
+ # # Create text generation pipeline
150
+ # generate_text = pipeline(
151
+ # model=model,
152
+ # tokenizer=tokenizer,
153
+ # return_full_text=True,
154
+ # task='text-generation',
155
+ # stopping_criteria=stopping_criteria,
156
+ # temperature=0.1,
157
+ # max_new_tokens=512,
158
+ # repetition_penalty=1.1
159
+ # )
160
+
161
+ # llm = HuggingFacePipeline(pipeline=generate_text)
162
+
163
+ # # Load the stored FAISS index
164
+ # try:
165
+ # embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cuda"})
166
+ # vectorstore = FAISS.load_local('faiss_index', embeddings)
167
+ # print("Loaded embedding successfully")
168
+ # except ImportError as e:
169
+ # print("FAISS could not be imported. Make sure FAISS is installed correctly.")
170
+ # raise e
171
+
172
+ # # Set up the Conversational Retrieval Chain
173
+ # chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True)
174
+
175
+ # chat_history = []
176
+
177
+ # def format_prompt(query):
178
+ # prompt = f"""
179
+ # You are a knowledgeable assistant with access to a comprehensive database.
180
+ # I need you to answer my question and provide related information in a specific format.
181
+ # Here's what I need:
182
+ # 1. A brief, general response to my question based on related answers retrieved.
183
+ # 2. A JSON-formatted output containing:
184
+ # - "question": The original question.
185
+ # - "answer": The detailed answer.
186
+ # - "related_questions": A list of related questions and their answers, each as a dictionary with the keys:
187
+ # - "question": The related question.
188
+ # - "answer": The related answer.
189
+ # Here's my question:
190
+ # {query}
191
+ # Include a brief final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
192
+ # """
193
+ # return prompt
194
+
195
+ # def qa_infer(query):
196
+ # formatted_prompt = format_prompt(query)
197
+ # result = chain({"question": formatted_prompt, "chat_history": chat_history})
198
+ # return result['answer']
199
+
200
+ # EXAMPLES = ["How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
201
+ # "Can BQ25896 support I2C interface?",
202
+ # "Does TDA2 vout support bt656 8-bit mode?"]
203
+
204
+ # demo = gr.Interface(fn=qa_infer, inputs="text", allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs="text")
205
+ # demo.launch()