arjunanand13 commited on
Commit
6b3f892
1 Parent(s): 1e9d34c

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +188 -0
app.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import transformers
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM
4
+ import accelerate
5
+ import einops
6
+ import langchain
7
+ import xformers
8
+ import os
9
+ import bitsandbytes
10
+ import sentence_transformers
11
+ import huggingface_hub
12
+ import torch
13
+ from torch import cuda, bfloat16
14
+ from transformers import StoppingCriteria, StoppingCriteriaList
15
+ from langchain.llms import HuggingFacePipeline
16
+ from langchain.document_loaders import TextLoader, DirectoryLoader
17
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
18
+ from langchain.embeddings import HuggingFaceEmbeddings
19
+ from langchain.vectorstores import FAISS
20
+ from langchain.chains import ConversationalRetrievalChain
21
+ from huggingface_hub import InferenceClient
22
+
23
+ # Login to Hugging Face using a token
24
+ # huggingface_hub.login(HF_TOKEN)
25
+
26
+
27
+ """CPU"""
28
+
29
+ # model_config = transformers.AutoConfig.from_pretrained(
30
+ # model_id,
31
+ # token=HF_TOKEN,
32
+ # # use_auth_token=hf_auth
33
+ # )
34
+ # model = transformers.AutoModelForCausalLM.from_pretrained(
35
+ # model_id,
36
+ # trust_remote_code=True,
37
+ # config=model_config,
38
+ # # quantization_config=bnb_config,
39
+ # token=HF_TOKEN,
40
+ # # use_auth_token=hf_auth
41
+ # )
42
+ # model.eval()
43
+ # tokenizer = transformers.AutoTokenizer.from_pretrained(
44
+ # model_id,
45
+ # token=HF_TOKEN,
46
+ # # use_auth_token=hf_auth
47
+ # )
48
+ # generate_text = transformers.pipeline(
49
+ # model=self.model, tokenizer=self.tokenizer,
50
+ # return_full_text=True,
51
+ # task='text-generation',
52
+ # temperature=0.01,
53
+ # max_new_tokens=512
54
+ # )
55
+
56
+
57
+
58
+ # define custom stopping criteria object
59
+ class StopOnTokens(StoppingCriteria):
60
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
61
+ for stop_ids in stop_token_ids:
62
+ if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
63
+ return True
64
+ return False
65
+
66
+ stopping_criteria = StoppingCriteriaList([StopOnTokens()])
67
+
68
+
69
+
70
+ loader = DirectoryLoader('data2/text/range/0-5000', loader_cls=TextLoader)
71
+ documents = loader.load()
72
+ print('len of documents are',len(documents))
73
+
74
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=250)
75
+ all_splits = text_splitter.split_documents(documents)
76
+
77
+ length_of_all_splits = len(all_splits)
78
+ print("Length of all_splits:", length_of_all_splits)
79
+
80
+ print (all_splits[0])
81
+ print("#######################################")
82
+ print (all_splits[1])
83
+ print("#######################################")
84
+ print (all_splits[2])
85
+ print("#######################################")
86
+ print (all_splits[3])
87
+ print("#######################################")
88
+ print (all_splits[4])
89
+
90
+ """
91
+ Loading of the LLama3 model
92
+ """
93
+ HF_TOKEN = os.environ.get("HF_TOKEN", None)
94
+ model_id = 'meta-llama/Meta-Llama-3-8B'
95
+ device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
96
+
97
+
98
+ """set quantization configuration to load large model with less GPU memory
99
+ this requires the `bitsandbytes` library"""
100
+ bnb_config = transformers.BitsAndBytesConfig(
101
+ load_in_4bit=True,
102
+ bnb_4bit_quant_type='nf4',
103
+ bnb_4bit_use_double_quant=True,
104
+ bnb_4bit_compute_dtype=bfloat16
105
+ )
106
+
107
+ tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct",token=HF_TOKEN)
108
+ model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto",token=HF_TOKEN,quantization_config=bnb_config) # to("cuda:0")
109
+ terminators = [
110
+ tokenizer.eos_token_id,
111
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
112
+ ]
113
+
114
+ """
115
+ Setting up the stop list to define stopping criteria.
116
+ """
117
+
118
+ stop_list = ['\nHuman:', '\n```\n']
119
+
120
+ stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list]
121
+ stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids]
122
+
123
+ generate_text = transformers.pipeline(
124
+ model=model,
125
+ tokenizer=tokenizer,
126
+ return_full_text=True, # langchain expects the full text
127
+ task='text-generation',
128
+ # we pass model parameters here too
129
+ stopping_criteria=stopping_criteria, # without this model rambles during chat
130
+ temperature=0.1, # 'randomness' of outputs, 0.0 is the min and 1.0 the max
131
+ max_new_tokens=512, # max number of tokens to generate in the output
132
+ repetition_penalty=1.1 # without this output begins repeating
133
+ )
134
+
135
+ llm = HuggingFacePipeline(pipeline=generate_text)
136
+
137
+
138
+ model_name = "sentence-transformers/all-mpnet-base-v2"
139
+ model_kwargs = {"device": "cuda"}
140
+
141
+ embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
142
+
143
+ # storing embeddings in the vector store
144
+ vectorstore = FAISS.from_documents(all_splits, embeddings)
145
+
146
+ chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True)
147
+
148
+ chat_history = []
149
+
150
+ def format_prompt(query):
151
+ # Construct a clear and structured prompt to guide the LLM's response
152
+ prompt = f"""
153
+ You are a knowledgeable assistant with access to a comprehensive database.
154
+ I need you to answer my question and provide related information in a specific format.
155
+ Here's what I need:
156
+ 1. A brief, general response to my question based on related answers retrieved.
157
+ 2. A JSON-formatted output containing:
158
+ - "question": The original question.
159
+ - "answer": The detailed answer.
160
+ - "related_questions": A list of related questions and their answers, each as a dictionary with the keys:
161
+ - "question": The related question.
162
+ - "answer": The related answer.
163
+ Here's my question:
164
+ {query}
165
+ Include a brief final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
166
+ """
167
+ return prompt
168
+
169
+
170
+ def qa_infer(query):
171
+ formatted_prompt = format_prompt(query)
172
+ result = chain({"question": formatted_prompt, "chat_history": chat_history})
173
+ return result['answer']
174
+
175
+ # query = "What` is the best TS pin configuration for BQ24040 in normal battery charge mode"
176
+ # qa_infer(query)
177
+
178
+ EXAMPLES = [" How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
179
+ "Can BQ25896 support I2C interface?",
180
+ "Does TDA2 vout support bt656 8-bit mode?"]
181
+
182
+ demo = gr.Interface(fn=qa_infer, inputs="text",allow_flagging='never', examples=EXAMPLES,
183
+ cache_examples=False,outputs="text")
184
+
185
+ # launch the app!
186
+ #demo.launch(enable_queue = True,share=True)
187
+ #demo.queue(default_enabled=True).launch(debug=True,share=True)
188
+ demo.launch()