Spaces:
Runtime error
Runtime error
syedmudassir16
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -104,6 +104,24 @@ class DocumentRetrievalAndGeneration:
|
|
104 |
|
105 |
return RetrieverTool(self)
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
def run_agentic_rag(self, question: str) -> str:
|
108 |
retriever_output = self.retriever_tool.run(question)
|
109 |
|
@@ -119,11 +137,26 @@ Question: {question}
|
|
119 |
Answer:"""
|
120 |
|
121 |
input_ids = self.tokenizer.encode(enhanced_prompt, return_tensors="pt").to(self.model.device)
|
|
|
|
|
|
|
|
|
122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
return self.generate_response_with_timeout(input_ids)
|
124 |
|
125 |
def query_and_generate_response(self, query):
|
126 |
-
#
|
127 |
similarityThreshold = 1
|
128 |
query_embedding = self.embeddings.encode(query, convert_to_tensor=True).cpu().numpy()
|
129 |
distances, indices = self.gpu_index.search(np.array([query_embedding]), k=3)
|
@@ -143,26 +176,10 @@ Answer:"""
|
|
143 |
print(self.all_splits[idx].page_content)
|
144 |
print("############################")
|
145 |
|
146 |
-
|
147 |
-
{"role": "system", "content": "You are a knowledgeable assistant with access to a comprehensive database."},
|
148 |
-
{"role": "user", "content": f"""
|
149 |
-
I need you to answer my question and provide related information in a specific format.
|
150 |
-
I have provided five relatable json files {content}, choose the most suitable chunks for answering the query.
|
151 |
-
RETURN ONLY SOLUTION without additional comments, sign-offs, retrived chunks, refrence to any Ticket or extra phrases. Be direct and to the point.
|
152 |
-
IF THERE IS NO ANSWER RELATABLE IN RETRIEVED CHUNKS, RETURN "NO SOLUTION AVAILABLE".
|
153 |
-
DO NOT GIVE REFRENCE TO ANY CHUNKS OR TICKETS,BE ON POINT.
|
154 |
-
|
155 |
-
Here's my question:
|
156 |
-
Query: {query}
|
157 |
-
Solution==>
|
158 |
-
"""}
|
159 |
-
]
|
160 |
-
input_ids = self.tokenizer.apply_chat_template(conversation, return_tensors="pt").to(self.model.device)
|
161 |
-
|
162 |
start_time = datetime.now()
|
163 |
-
standard_response = self.
|
164 |
elapsed_time = datetime.now() - start_time
|
165 |
-
|
166 |
print("Generated standard response:", standard_response)
|
167 |
print("Time elapsed:", elapsed_time)
|
168 |
print("Device in use:", self.model.device)
|
@@ -170,15 +187,16 @@ Answer:"""
|
|
170 |
standard_solution_text = standard_response.strip()
|
171 |
if "Solution:" in standard_solution_text:
|
172 |
standard_solution_text = standard_solution_text.split("Solution:", 1)[1].strip()
|
173 |
-
|
174 |
-
# Post-processing to remove "assistant" prefix
|
175 |
standard_solution_text = re.sub(r'^assistant\s*', '', standard_solution_text, flags=re.IGNORECASE)
|
176 |
standard_solution_text = standard_solution_text.strip()
|
177 |
|
178 |
# Agentic RAG
|
179 |
agentic_solution_text = self.run_agentic_rag(query)
|
180 |
|
181 |
-
|
|
|
|
|
|
|
182 |
return combined_solution, content
|
183 |
|
184 |
def qa_infer_gradio(self, query):
|
@@ -220,7 +238,7 @@ if __name__ == "__main__":
|
|
220 |
examples=EXAMPLES,
|
221 |
cache_examples=False,
|
222 |
outputs=[gr.Textbox(label="RESPONSE"), gr.Textbox(label="RELATED QUERIES")],
|
223 |
-
css=
|
224 |
title="TI E2E FORUM"
|
225 |
)
|
226 |
|
|
|
104 |
|
105 |
return RetrieverTool(self)
|
106 |
|
107 |
+
def run_standard_rag(self, query: str, content: str) -> str:
|
108 |
+
conversation = [
|
109 |
+
{"role": "system", "content": "You are a knowledgeable assistant with access to a comprehensive database."},
|
110 |
+
{"role": "user", "content": f"""
|
111 |
+
I need you to answer my question and provide related information in a specific format.
|
112 |
+
I have provided five relatable json files {content}, choose the most suitable chunks for answering the query.
|
113 |
+
RETURN ONLY SOLUTION without additional comments, sign-offs, retrived chunks, refrence to any Ticket or extra phrases. Be direct and to the point.
|
114 |
+
IF THERE IS NO ANSWER RELATABLE IN RETRIEVED CHUNKS, RETURN "NO SOLUTION AVAILABLE".
|
115 |
+
DO NOT GIVE REFRENCE TO ANY CHUNKS OR TICKETS,BE ON POINT.
|
116 |
+
|
117 |
+
Here's my question:
|
118 |
+
Query: {query}
|
119 |
+
Solution==>
|
120 |
+
"""}
|
121 |
+
]
|
122 |
+
input_ids = self.tokenizer.apply_chat_template(conversation, return_tensors="pt").to(self.model.device)
|
123 |
+
return self.generate_response_with_timeout(input_ids)
|
124 |
+
|
125 |
def run_agentic_rag(self, question: str) -> str:
|
126 |
retriever_output = self.retriever_tool.run(question)
|
127 |
|
|
|
137 |
Answer:"""
|
138 |
|
139 |
input_ids = self.tokenizer.encode(enhanced_prompt, return_tensors="pt").to(self.model.device)
|
140 |
+
return self.generate_response_with_timeout(input_ids)
|
141 |
+
|
142 |
+
def run_analytical_rag(self, question: str) -> str:
|
143 |
+
retriever_output = self.retriever_tool.run(question)
|
144 |
|
145 |
+
enhanced_prompt = f"""Using the following information retrieved from the knowledge base:
|
146 |
+
|
147 |
+
{retriever_output}
|
148 |
+
|
149 |
+
Provide a detailed, step-by-step analysis of the question below. Break down the problem, consider different aspects, and provide a thorough explanation. If relevant information is missing, state what additional data would be needed for a complete analysis.
|
150 |
+
|
151 |
+
Question: {question}
|
152 |
+
Analysis:
|
153 |
+
1. """
|
154 |
+
|
155 |
+
input_ids = self.tokenizer.encode(enhanced_prompt, return_tensors="pt").to(self.model.device)
|
156 |
return self.generate_response_with_timeout(input_ids)
|
157 |
|
158 |
def query_and_generate_response(self, query):
|
159 |
+
# Retrieval step
|
160 |
similarityThreshold = 1
|
161 |
query_embedding = self.embeddings.encode(query, convert_to_tensor=True).cpu().numpy()
|
162 |
distances, indices = self.gpu_index.search(np.array([query_embedding]), k=3)
|
|
|
176 |
print(self.all_splits[idx].page_content)
|
177 |
print("############################")
|
178 |
|
179 |
+
# Standard RAG
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
start_time = datetime.now()
|
181 |
+
standard_response = self.run_standard_rag(query, content)
|
182 |
elapsed_time = datetime.now() - start_time
|
|
|
183 |
print("Generated standard response:", standard_response)
|
184 |
print("Time elapsed:", elapsed_time)
|
185 |
print("Device in use:", self.model.device)
|
|
|
187 |
standard_solution_text = standard_response.strip()
|
188 |
if "Solution:" in standard_solution_text:
|
189 |
standard_solution_text = standard_solution_text.split("Solution:", 1)[1].strip()
|
|
|
|
|
190 |
standard_solution_text = re.sub(r'^assistant\s*', '', standard_solution_text, flags=re.IGNORECASE)
|
191 |
standard_solution_text = standard_solution_text.strip()
|
192 |
|
193 |
# Agentic RAG
|
194 |
agentic_solution_text = self.run_agentic_rag(query)
|
195 |
|
196 |
+
# Analytical RAG
|
197 |
+
analytical_solution_text = self.run_analytical_rag(query)
|
198 |
+
|
199 |
+
combined_solution = f"Standard RAG Solution:\n{standard_solution_text}\n\nAgentic RAG Solution:\n{agentic_solution_text}\n\nAnalytical RAG Solution:\n{analytical_solution_text}"
|
200 |
return combined_solution, content
|
201 |
|
202 |
def qa_infer_gradio(self, query):
|
|
|
238 |
examples=EXAMPLES,
|
239 |
cache_examples=False,
|
240 |
outputs=[gr.Textbox(label="RESPONSE"), gr.Textbox(label="RELATED QUERIES")],
|
241 |
+
css=code,
|
242 |
title="TI E2E FORUM"
|
243 |
)
|
244 |
|