Spaces:
Runtime error
Runtime error
syedmudassir16
commited on
Commit
•
d4b9099
1
Parent(s):
939b7da
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
"Single Thread"
|
2 |
-
|
3 |
import os
|
4 |
import multiprocessing
|
5 |
import concurrent.futures
|
@@ -10,18 +8,19 @@ from sentence_transformers import SentenceTransformer
|
|
10 |
import faiss
|
11 |
import torch
|
12 |
import numpy as np
|
13 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer,
|
14 |
from datetime import datetime
|
15 |
import json
|
16 |
import gradio as gr
|
17 |
-
import re
|
|
|
18 |
|
19 |
class DocumentRetrievalAndGeneration:
|
20 |
def __init__(self, embedding_model_name, lm_model_id, data_folder):
|
21 |
self.all_splits = self.load_documents(data_folder)
|
22 |
self.embeddings = SentenceTransformer(embedding_model_name)
|
23 |
self.gpu_index = self.create_faiss_index()
|
24 |
-
self.
|
25 |
|
26 |
def load_documents(self, folder_path):
|
27 |
loader = DirectoryLoader(folder_path, loader_cls=TextLoader)
|
@@ -30,7 +29,7 @@ class DocumentRetrievalAndGeneration:
|
|
30 |
all_splits = text_splitter.split_documents(documents)
|
31 |
print('Length of documents:', len(documents))
|
32 |
print("LEN of all_splits", len(all_splits))
|
33 |
-
for i in range(
|
34 |
print(all_splits[i].page_content)
|
35 |
return all_splits
|
36 |
|
@@ -44,124 +43,101 @@ class DocumentRetrievalAndGeneration:
|
|
44 |
return gpu_index
|
45 |
|
46 |
def initialize_llm(self, model_id):
|
47 |
-
|
48 |
load_in_4bit=True,
|
49 |
bnb_4bit_use_double_quant=True,
|
50 |
bnb_4bit_quant_type="nf4",
|
51 |
bnb_4bit_compute_dtype=torch.bfloat16
|
52 |
)
|
53 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
54 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config)
|
55 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
max_new_tokens=256,
|
63 |
)
|
64 |
-
return
|
65 |
|
66 |
-
def generate_response_with_timeout(self,
|
67 |
try:
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
def query_and_generate_response(self, query):
|
|
|
76 |
query_embedding = self.embeddings.encode(query, convert_to_tensor=True).cpu().numpy()
|
77 |
-
distances, indices = self.gpu_index.search(np.array([query_embedding]), k=
|
78 |
-
|
79 |
content = ""
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
81 |
content += "-" * 50 + "\n"
|
82 |
content += self.all_splits[idx].page_content + "\n"
|
83 |
print("CHUNK", idx)
|
|
|
|
|
84 |
print(self.all_splits[idx].page_content)
|
85 |
print("############################")
|
86 |
-
prompt = f"""<s>
|
87 |
-
You are a knowledgeable assistant with access to a comprehensive database.
|
88 |
-
I need you to answer my question and provide related information in a specific format.
|
89 |
-
I have provided five relatable json files {content}, choose the most suitable chunks for answering the query
|
90 |
-
Here's what I need:
|
91 |
-
Include a final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
|
92 |
-
content
|
93 |
-
Here's my question:
|
94 |
-
Query:{query}
|
95 |
-
Solution==>
|
96 |
-
RETURN ONLY SOLUTION . IF THEIR IS NO ANSWER RELATABLE IN RETRIEVED CHUNKS , RETURN " NO SOLUTION AVAILABLE"
|
97 |
-
Example1
|
98 |
-
Query: "How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
|
99 |
-
Solution: "To use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM, you need to modify the configuration file of the NDK application. Specifically, change the processor reference from 'A15_0' to 'IPU1_0'.",
|
100 |
-
|
101 |
-
Example2
|
102 |
-
Query: "Can BQ25896 support I2C interface?",
|
103 |
-
Solution: "Yes, the BQ25896 charger supports the I2C interface for communication."
|
104 |
-
</s>
|
105 |
-
"""
|
106 |
-
prompt2 = f"""
|
107 |
-
<s>
|
108 |
-
You are a knowledgeable assistant with access to a comprehensive database.
|
109 |
-
I need you to answer my question and provide related information in a specific format.
|
110 |
-
I have provided five relatable JSON files. Choose the most suitable chunks for answering the query.
|
111 |
-
Here's what I need:
|
112 |
-
Include a final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
|
113 |
-
|
114 |
-
Examples:
|
115 |
-
Example1:
|
116 |
-
Query: "How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
|
117 |
-
Solution: "To use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM, you need to modify the configuration file of the NDK application. Specifically, change the processor reference from 'A15_0' to 'IPU1_0'."
|
118 |
-
|
119 |
-
Example2:
|
120 |
-
Query: "Can BQ25896 support I2C interface?",
|
121 |
-
Solution: "Yes, the BQ25896 charger supports the I2C interface for communication."
|
122 |
-
|
123 |
-
content: {content}
|
124 |
-
|
125 |
-
Here's my question:
|
126 |
-
Query: {query}
|
127 |
-
|
128 |
-
Solution==>
|
129 |
-
RETURN ONLY SOLUTION. IF THERE IS NO ANSWER RELATABLE IN RETRIEVED CHUNKS, RETURN "NO SOLUTION AVAILABLE"
|
130 |
-
</s>
|
131 |
-
"""
|
132 |
-
# prompt = f"Query: {query}\nSolution: {content}\n"
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
# Perform inference and measure time
|
140 |
start_time = datetime.now()
|
141 |
-
|
142 |
-
# generated_ids = self.llm.model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
|
143 |
elapsed_time = datetime.now() - start_time
|
144 |
|
145 |
-
# Decode and return output
|
146 |
-
decoded = self.llm.tokenizer.batch_decode(generated_ids)
|
147 |
-
generated_response = decoded[0]
|
148 |
-
match1 = re.search(r'\[/INST\](.*?)</s>', generated_response, re.DOTALL)
|
149 |
-
|
150 |
-
match2 = re.search(r'Solution:(.*?)</s>', generated_response, re.DOTALL | re.IGNORECASE)
|
151 |
-
if match1:
|
152 |
-
solution_text = match1.group(1).strip()
|
153 |
-
print(solution_text)
|
154 |
-
if "Solution:" in solution_text:
|
155 |
-
solution_text = solution_text.split("Solution:", 1)[1].strip()
|
156 |
-
elif match2:
|
157 |
-
solution_text = match2.group(1).strip()
|
158 |
-
print(solution_text)
|
159 |
-
|
160 |
-
else:
|
161 |
-
solution_text=generated_response
|
162 |
print("Generated response:", generated_response)
|
163 |
print("Time elapsed:", elapsed_time)
|
164 |
-
print("Device in use:", self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
return solution_text, content
|
167 |
|
@@ -170,29 +146,25 @@ class DocumentRetrievalAndGeneration:
|
|
170 |
return response
|
171 |
|
172 |
if __name__ == "__main__":
|
173 |
-
# Example usage
|
174 |
embedding_model_name = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L12'
|
175 |
lm_model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
176 |
data_folder = 'sample_embedding_folder2'
|
177 |
|
178 |
doc_retrieval_gen = DocumentRetrievalAndGeneration(embedding_model_name, lm_model_id, data_folder)
|
179 |
|
180 |
-
"""Dual Interface"""
|
181 |
-
|
182 |
def launch_interface():
|
183 |
css_code = """
|
184 |
.gradio-container {
|
185 |
background-color: #daccdb;
|
186 |
}
|
187 |
-
/* Button styling for all buttons */
|
188 |
button {
|
189 |
-
background-color: #927fc7;
|
190 |
color: black;
|
191 |
border: 1px solid black;
|
192 |
padding: 10px;
|
193 |
margin-right: 10px;
|
194 |
-
font-size: 16px;
|
195 |
-
font-weight: bold;
|
196 |
}
|
197 |
"""
|
198 |
EXAMPLES = [
|
@@ -200,88 +172,18 @@ if __name__ == "__main__":
|
|
200 |
"I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?",
|
201 |
"Could you clarify the maximum number of cameras that can be connected simultaneously to the video input ports on the TDA2x SoC, considering it supports up to 10 multiplexed input ports and includes 3 dedicated video input modules?"
|
202 |
]
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
# Read the file content
|
207 |
-
with open(file_path, "r") as file:
|
208 |
-
content = file.read()
|
209 |
-
ticket_names = json.loads(content)
|
210 |
-
dropdown = gr.Dropdown(label="Sample queries", choices=ticket_names)
|
211 |
-
|
212 |
-
# Define Gradio interfaces
|
213 |
-
tab1 = gr.Interface(
|
214 |
fn=doc_retrieval_gen.qa_infer_gradio,
|
215 |
inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here")],
|
216 |
allow_flagging='never',
|
217 |
examples=EXAMPLES,
|
218 |
cache_examples=False,
|
219 |
-
outputs=[gr.Textbox(label="
|
220 |
-
css=css_code
|
|
|
221 |
)
|
222 |
-
tab2 = gr.Interface(
|
223 |
-
fn=doc_retrieval_gen.qa_infer_gradio,
|
224 |
-
inputs=[dropdown],
|
225 |
-
allow_flagging='never',
|
226 |
-
outputs=[gr.Textbox(label="SOLUTION"), gr.Textbox(label="RELATED QUERIES")],
|
227 |
-
css=css_code
|
228 |
-
)
|
229 |
-
|
230 |
-
# Combine interfaces into a tabbed interface
|
231 |
-
gr.TabbedInterface(
|
232 |
-
[tab1, tab2],
|
233 |
-
["Textbox Input", "FAQs"],
|
234 |
-
title="TI E2E FORUM",
|
235 |
-
css=css_code
|
236 |
-
).launch(debug=True)
|
237 |
-
|
238 |
-
# Launch the interface
|
239 |
-
launch_interface()
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
"""Single Interface"""
|
244 |
-
# def launch_interface():
|
245 |
-
# css_code = """
|
246 |
-
# .gradio-container {
|
247 |
-
# background-color: #daccdb;
|
248 |
-
# }
|
249 |
-
# /* Button styling for all buttons */
|
250 |
-
# button {
|
251 |
-
# background-color: #927fc7; /* Default color for all other buttons */
|
252 |
-
# color: black;
|
253 |
-
# border: 1px solid black;
|
254 |
-
# padding: 10px;
|
255 |
-
# margin-right: 10px;
|
256 |
-
# font-size: 16px; /* Increase font size */
|
257 |
-
# font-weight: bold; /* Make text bold */
|
258 |
-
# }
|
259 |
-
# """
|
260 |
-
# EXAMPLES = ["On which devices can the VIP and CSI2 modules operate simultaneously? ",
|
261 |
-
# "I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?",
|
262 |
-
# "Could you clarify the maximum number of cameras that can be connected simultaneously to the video input ports on the TDA2x SoC, considering it supports up to 10 multiplexed input ports and includes 3 dedicated video input modules?"]
|
263 |
-
|
264 |
-
# file_path = "ticketNames.txt"
|
265 |
-
|
266 |
-
# # Read the file content
|
267 |
-
# with open(file_path, "r") as file:
|
268 |
-
# content = file.read()
|
269 |
-
# ticket_names = json.loads(content)
|
270 |
-
# dropdown = gr.Dropdown(label="Sample queries", choices=ticket_names)
|
271 |
-
|
272 |
-
# # Define Gradio interface
|
273 |
-
# interface = gr.Interface(
|
274 |
-
# fn=doc_retrieval_gen.qa_infer_gradio,
|
275 |
-
# inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here")],
|
276 |
-
# allow_flagging='never',
|
277 |
-
# examples=EXAMPLES,
|
278 |
-
# cache_examples=False,
|
279 |
-
# outputs=[gr.Textbox(label="SOLUTION"), gr.Textbox(label="RELATED QUERIES")],
|
280 |
-
# css=css_code
|
281 |
-
# )
|
282 |
|
283 |
-
|
284 |
-
# interface.launch(debug=True)
|
285 |
|
286 |
-
|
287 |
-
# launch_interface()
|
|
|
|
|
|
|
1 |
import os
|
2 |
import multiprocessing
|
3 |
import concurrent.futures
|
|
|
8 |
import faiss
|
9 |
import torch
|
10 |
import numpy as np
|
11 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
|
12 |
from datetime import datetime
|
13 |
import json
|
14 |
import gradio as gr
|
15 |
+
import re
|
16 |
+
from threading import Thread
|
17 |
|
18 |
class DocumentRetrievalAndGeneration:
|
19 |
def __init__(self, embedding_model_name, lm_model_id, data_folder):
|
20 |
self.all_splits = self.load_documents(data_folder)
|
21 |
self.embeddings = SentenceTransformer(embedding_model_name)
|
22 |
self.gpu_index = self.create_faiss_index()
|
23 |
+
self.tokenizer, self.model = self.initialize_llm(lm_model_id)
|
24 |
|
25 |
def load_documents(self, folder_path):
|
26 |
loader = DirectoryLoader(folder_path, loader_cls=TextLoader)
|
|
|
29 |
all_splits = text_splitter.split_documents(documents)
|
30 |
print('Length of documents:', len(documents))
|
31 |
print("LEN of all_splits", len(all_splits))
|
32 |
+
for i in range(3):
|
33 |
print(all_splits[i].page_content)
|
34 |
return all_splits
|
35 |
|
|
|
43 |
return gpu_index
|
44 |
|
45 |
def initialize_llm(self, model_id):
|
46 |
+
quantization_config = BitsAndBytesConfig(
|
47 |
load_in_4bit=True,
|
48 |
bnb_4bit_use_double_quant=True,
|
49 |
bnb_4bit_quant_type="nf4",
|
50 |
bnb_4bit_compute_dtype=torch.bfloat16
|
51 |
)
|
|
|
|
|
52 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
53 |
+
model = AutoModelForCausalLM.from_pretrained(
|
54 |
+
model_id,
|
55 |
+
torch_dtype=torch.bfloat16,
|
56 |
+
device_map="auto",
|
57 |
+
|
58 |
+
quantization_config=quantization_config
|
|
|
59 |
)
|
60 |
+
return tokenizer, model
|
61 |
|
62 |
+
def generate_response_with_timeout(self, input_ids, max_new_tokens=1000):
|
63 |
try:
|
64 |
+
streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
65 |
+
generate_kwargs = dict(
|
66 |
+
input_ids=input_ids,
|
67 |
+
max_new_tokens=max_new_tokens,
|
68 |
+
do_sample=True,
|
69 |
+
top_p=1.0,
|
70 |
+
top_k=20,
|
71 |
+
temperature=0.8,
|
72 |
+
repetition_penalty=1.2,
|
73 |
+
eos_token_id=[128001, 128008, 128009],
|
74 |
+
streamer=streamer,
|
75 |
+
)
|
76 |
+
|
77 |
+
thread = Thread(target=self.model.generate, kwargs=generate_kwargs)
|
78 |
+
thread.start()
|
79 |
+
|
80 |
+
generated_text = ""
|
81 |
+
for new_text in streamer:
|
82 |
+
generated_text += new_text
|
83 |
+
|
84 |
+
return generated_text
|
85 |
+
except Exception as e:
|
86 |
+
print(f"Error in generate_response_with_timeout: {str(e)}")
|
87 |
+
return "Text generation process encountered an error"
|
88 |
+
|
89 |
def query_and_generate_response(self, query):
|
90 |
+
similarityThreshold = 1
|
91 |
query_embedding = self.embeddings.encode(query, convert_to_tensor=True).cpu().numpy()
|
92 |
+
distances, indices = self.gpu_index.search(np.array([query_embedding]), k=3)
|
93 |
+
print("Distance", distances, "indices", indices)
|
94 |
content = ""
|
95 |
+
filtered_results = []
|
96 |
+
for idx, distance in zip(indices[0], distances[0]):
|
97 |
+
if distance <= similarityThreshold:
|
98 |
+
filtered_results.append(idx)
|
99 |
+
for i in filtered_results:
|
100 |
+
print(self.all_splits[i].page_content)
|
101 |
content += "-" * 50 + "\n"
|
102 |
content += self.all_splits[idx].page_content + "\n"
|
103 |
print("CHUNK", idx)
|
104 |
+
print("Distance:", distance)
|
105 |
+
print("indices:", indices)
|
106 |
print(self.all_splits[idx].page_content)
|
107 |
print("############################")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
conversation = [
|
110 |
+
{"role": "system", "content": "You are a knowledgeable assistant with access to a comprehensive database."},
|
111 |
+
{"role": "user", "content": f"""
|
112 |
+
I need you to answer my question and provide related information in a specific format.
|
113 |
+
I have provided five relatable json files {content}, choose the most suitable chunks for answering the query.
|
114 |
+
RETURN ONLY SOLUTION without additional comments, sign-offs, retrived chunks, refrence to any Ticket or extra phrases. Be direct and to the point.
|
115 |
+
IF THERE IS NO ANSWER RELATABLE IN RETRIEVED CHUNKS, RETURN "NO SOLUTION AVAILABLE".
|
116 |
+
DO NOT GIVE REFRENCE TO ANY CHUNKS OR TICKETS,BE ON POINT.
|
117 |
+
|
118 |
+
Here's my question:
|
119 |
+
Query: {query}
|
120 |
+
Solution==>
|
121 |
+
"""}
|
122 |
+
]
|
123 |
+
#Include a final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
|
124 |
+
input_ids = self.tokenizer.apply_chat_template(conversation, return_tensors="pt").to(self.model.device)
|
125 |
|
|
|
126 |
start_time = datetime.now()
|
127 |
+
generated_response = self.generate_response_with_timeout(input_ids)
|
|
|
128 |
elapsed_time = datetime.now() - start_time
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
print("Generated response:", generated_response)
|
131 |
print("Time elapsed:", elapsed_time)
|
132 |
+
print("Device in use:", self.model.device)
|
133 |
+
|
134 |
+
solution_text = generated_response.strip()
|
135 |
+
if "Solution:" in solution_text:
|
136 |
+
solution_text = solution_text.split("Solution:", 1)[1].strip()
|
137 |
+
|
138 |
+
# Post-processing to remove "assistant" prefix
|
139 |
+
solution_text = re.sub(r'^assistant\s*', '', solution_text, flags=re.IGNORECASE)
|
140 |
+
solution_text = solution_text.strip()
|
141 |
|
142 |
return solution_text, content
|
143 |
|
|
|
146 |
return response
|
147 |
|
148 |
if __name__ == "__main__":
|
|
|
149 |
embedding_model_name = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L12'
|
150 |
lm_model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
151 |
data_folder = 'sample_embedding_folder2'
|
152 |
|
153 |
doc_retrieval_gen = DocumentRetrievalAndGeneration(embedding_model_name, lm_model_id, data_folder)
|
154 |
|
|
|
|
|
155 |
def launch_interface():
|
156 |
css_code = """
|
157 |
.gradio-container {
|
158 |
background-color: #daccdb;
|
159 |
}
|
|
|
160 |
button {
|
161 |
+
background-color: #927fc7;
|
162 |
color: black;
|
163 |
border: 1px solid black;
|
164 |
padding: 10px;
|
165 |
margin-right: 10px;
|
166 |
+
font-size: 16px;
|
167 |
+
font-weight: bold;
|
168 |
}
|
169 |
"""
|
170 |
EXAMPLES = [
|
|
|
172 |
"I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?",
|
173 |
"Could you clarify the maximum number of cameras that can be connected simultaneously to the video input ports on the TDA2x SoC, considering it supports up to 10 multiplexed input ports and includes 3 dedicated video input modules?"
|
174 |
]
|
175 |
+
|
176 |
+
interface = gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
fn=doc_retrieval_gen.qa_infer_gradio,
|
178 |
inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here")],
|
179 |
allow_flagging='never',
|
180 |
examples=EXAMPLES,
|
181 |
cache_examples=False,
|
182 |
+
outputs=[gr.Textbox(label="RESPONSE"), gr.Textbox(label="RELATED QUERIES")],
|
183 |
+
css=css_code,
|
184 |
+
title="TI E2E FORUM"
|
185 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
+
interface.launch(debug=True)
|
|
|
188 |
|
189 |
+
launch_interface()
|
|