import os from langchain.document_loaders import TextLoader, DirectoryLoader from langchain.vectorstores import FAISS from sentence_transformers import SentenceTransformer import faiss import torch import numpy as np from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig from datetime import datetime import gradio as gr class DocumentRetrievalAndGeneration: def __init__(self, embedding_model_name, lm_model_id, data_folder, faiss_index_path): self.documents = self.load_documents(data_folder) self.embeddings = SentenceTransformer(embedding_model_name) self.gpu_index = self.load_faiss_index(faiss_index_path) self.llm = self.initialize_llm(lm_model_id) def load_documents(self, folder_path): loader = DirectoryLoader(folder_path, loader_cls=TextLoader) documents = loader.load() print('Length of documents:', len(documents)) return documents def load_faiss_index(self, faiss_index_path): cpu_index = faiss.read_index(faiss_index_path) gpu_resource = faiss.StandardGpuResources() gpu_index = faiss.index_cpu_to_gpu(gpu_resource, 0, cpu_index) return gpu_index def initialize_llm(self, model_id): bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config) tokenizer = AutoTokenizer.from_pretrained(model_id) generate_text = pipeline( model=model, tokenizer=tokenizer, return_full_text=True, task='text-generation', temperature=0.6, max_new_tokens=2048, ) return generate_text def query_and_generate_response(self, query): query_embedding = self.embeddings.encode(query, convert_to_tensor=True).cpu().numpy() distances, indices = self.gpu_index.search(np.array([query_embedding]), k=5) content = "" for idx in indices[0]: content += "-" * 50 + "\n" content += self.documents[idx].page_content + "\n" print(self.documents[idx].page_content) print("############################") prompt = f"Query: {query}\nSolution: {content}\n" # Encode and prepare inputs messages = [{"role": "user", "content": prompt}] encodeds = self.llm.tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(self.llm.device) # Perform inference and measure time start_time = datetime.now() generated_ids = self.llm.model.generate(model_inputs, max_new_tokens=1000, do_sample=True) elapsed_time = datetime.now() - start_time # Decode and return output decoded = self.llm.tokenizer.batch_decode(generated_ids) generated_response = decoded[0] print("Generated response:", generated_response) print("Time elapsed:", elapsed_time) print("Device in use:", self.llm.device) return generated_response def qa_infer_gradio(self, query): response = self.query_and_generate_response(query) return response if __name__ == "__main__": # Example usage embedding_model_name = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L12' lm_model_id = "mistralai/Mistral-7B-Instruct-v0.2" data_folder = 'sample_embedding_folder' faiss_index_path = 'faiss_index_new_model3.index' doc_retrieval_gen = DocumentRetrievalAndGeneration(embedding_model_name, lm_model_id, data_folder, faiss_index_path) # Define Gradio interface function def launch_interface(): css_code = """ .gradio-container { background-color: #daccdb; } /* Button styling for all buttons */ button { background-color: #927fc7; /* Default color for all other buttons */ color: black; border: 1px solid black; padding: 10px; margin-right: 10px; font-size: 16px; /* Increase font size */ font-weight: bold; /* Make text bold */ } """ EXAMPLES = ["TDA4 product planning and datasheet release progress? ", "I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?", "Master core in TDA2XX is a15 and in TDA3XX it is m4,so we have to shift all modules that are being used by a15 in TDA2XX to m4 in TDA3xx."] file_path = "ticketNames.txt" # Read the file content with open(file_path, "r") as file: content = file.read() ticket_names = json.loads(content) dropdown = gr.Dropdown(label="Sample queries", choices=ticket_names) # Define Gradio interface interface = gr.Interface( fn=doc_retrieval_gen.qa_infer_gradio, inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here")], allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs=gr.Textbox(label="SOLUTION"), css=css_code ) # Launch Gradio interface interface.launch(debug=True) # Launch the interface launch_interface()